These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19889712)

  • 1. Rapid formation of pragmatic rule representations in the human brain during instruction-based learning.
    Ruge H; Wolfensteller U
    Cereb Cortex; 2010 Jul; 20(7):1656-67. PubMed ID: 19889712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bending the rules: strategic behavioral differences are reflected in the brain.
    Wolfensteller U; von Cramon DY
    J Cogn Neurosci; 2010 Feb; 22(2):278-91. PubMed ID: 19400682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH; Maguire RP; Leenders KL; de Jong BM
    Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-task interference during initial learning of a new motor task results from competition for the same brain areas.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Neuropsychologia; 2010 Jul; 48(9):2517-27. PubMed ID: 20434467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought.
    Gilbert SJ; Frith CD; Burgess PW
    Eur J Neurosci; 2005 Mar; 21(5):1423-31. PubMed ID: 15813952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations of cortical activation and behavior during the application of newly learned categories.
    Little DM; Thulborn KR
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):33-47. PubMed ID: 15936179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N; Schütze H; Düzel E
    Neuropsychologia; 2006; 44(10):1765-76. PubMed ID: 16701731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in brain activation during the acquisition of a new bimanual coodination task.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuropsychologia; 2004; 42(7):855-67. PubMed ID: 14998701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex.
    Badre D; D'Esposito M
    J Cogn Neurosci; 2007 Dec; 19(12):2082-99. PubMed ID: 17892391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of large-scale networks in the brain using fMRI.
    Bellec P; Perlbarg V; Jbabdi S; Pélégrini-Issac M; Anton JL; Doyon J; Benali H
    Neuroimage; 2006 Feb; 29(4):1231-43. PubMed ID: 16246590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where is your shoulder? Neural correlates of localizing others' body parts.
    Felician O; Anton JL; Nazarian B; Roth M; Roll JP; Romaiguère P
    Neuropsychologia; 2009 Jul; 47(8-9):1909-16. PubMed ID: 19428423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the lateral prefrontal cortex and anterior cingulate in stimulus-response association reversals.
    Parris BA; Thai NJ; Benattayallah A; Summers IR; Hodgson TL
    J Cogn Neurosci; 2007 Jan; 19(1):13-24. PubMed ID: 17214559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms, temporal dynamics, and individual differences in interference control.
    Forstmann BU; van den Wildenberg WP; Ridderinkhof KR
    J Cogn Neurosci; 2008 Oct; 20(10):1854-65. PubMed ID: 18370596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI.
    Tang K; Staines WR; Black SE; McIlroy WE
    J Neurosci Methods; 2009 Mar; 178(1):65-74. PubMed ID: 19109997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning the exception to the rule: model-based FMRI reveals specialized representations for surprising category members.
    Davis T; Love BC; Preston AR
    Cereb Cortex; 2012 Feb; 22(2):260-73. PubMed ID: 21666132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.