BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 19889834)

  • 1. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.
    Boer VM; Crutchfield CA; Bradley PH; Botstein D; Rabinowitz JD
    Mol Biol Cell; 2010 Jan; 21(1):198-211. PubMed ID: 19889834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae.
    Kumar K; Venkatraman V; Bruheim P
    Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Hazelwood LA; Walsh MC; Luttik MA; Daran-Lapujade P; Pronk JT; Daran JM
    Appl Environ Microbiol; 2009 Nov; 75(21):6876-85. PubMed ID: 19734328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation.
    Usaite R; Patil KR; Grotkjaer T; Nielsen J; Regenberg B
    Appl Environ Microbiol; 2006 Sep; 72(9):6194-203. PubMed ID: 16957246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient control of eukaryote cell growth: a systems biology study in yeast.
    Gutteridge A; Pir P; Castrillo JI; Charles PD; Lilley KS; Oliver SG
    BMC Biol; 2010 May; 8():68. PubMed ID: 20497545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae: common transcriptional responses to different nutrient signals.
    Conway MK; Grunwald D; Heideman W
    G3 (Bethesda); 2012 Sep; 2(9):1003-17. PubMed ID: 22973537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur.
    Boer VM; de Winde JH; Pronk JT; Piper MD
    J Biol Chem; 2003 Jan; 278(5):3265-74. PubMed ID: 12414795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.
    Parrou JL; Enjalbert B; Plourde L; Bauche A; Gonzalez B; François J
    Yeast; 1999 Feb; 15(3):191-203. PubMed ID: 10077186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connecting extracellular metabolomic measurements to intracellular flux states in yeast.
    Mo ML; Palsson BO; Herrgård MJ
    BMC Syst Biol; 2009 Mar; 3():37. PubMed ID: 19321003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation.
    Kresnowati MT; van Winden WA; Almering MJ; ten Pierick A; Ras C; Knijnenburg TA; Daran-Lapujade P; Pronk JT; Heijnen JJ; Daran JM
    Mol Syst Biol; 2006; 2():49. PubMed ID: 16969341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How yeast re-programmes its transcriptional profile in response to different nutrient impulses.
    Dikicioglu D; Karabekmez E; Rash B; Pir P; Kirdar B; Oliver SG
    BMC Syst Biol; 2011 Sep; 5():148. PubMed ID: 21943358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutritional homeostasis in batch and steady-state culture of yeast.
    Saldanha AJ; Brauer MJ; Botstein D
    Mol Biol Cell; 2004 Sep; 15(9):4089-104. PubMed ID: 15240820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast cells can access distinct quiescent states.
    Klosinska MM; Crutchfield CA; Bradley PH; Rabinowitz JD; Broach JR
    Genes Dev; 2011 Feb; 25(4):336-49. PubMed ID: 21289062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source.
    Derrick S; Large PJ
    J Gen Microbiol; 1993 Nov; 139(11):2783-92. PubMed ID: 8277258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux.
    Meijer MM; Boonstra J; Verkleij AJ; Verrips CT
    J Biol Chem; 1998 Sep; 273(37):24102-7. PubMed ID: 9727030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data?
    Granucci N; Pinu FR; Han TL; Villas-Boas SG
    Mol Biosyst; 2015 Dec; 11(12):3297-304. PubMed ID: 26400772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of intracellular metabolites concentrations in Escherichia coli under nutrition stress using liquid chromatography-tandem mass spectrometry.
    Ji F; Shen Y; Tang L; Cai Z
    Talanta; 2018 Nov; 189():1-7. PubMed ID: 30086891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.
    Godard P; Urrestarazu A; Vissers S; Kontos K; Bontempi G; van Helden J; André B
    Mol Cell Biol; 2007 Apr; 27(8):3065-86. PubMed ID: 17308034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions.
    Larsson C; von Stockar U; Marison I; Gustafsson L
    J Bacteriol; 1993 Aug; 175(15):4809-16. PubMed ID: 8335637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.