BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 19889850)

  • 1. Dynamic modulation of phasic and asynchronous glutamate release in hippocampal synapses.
    Chang CY; Mennerick S
    J Neurophysiol; 2010 Jan; 103(1):392-401. PubMed ID: 19889850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses.
    Otsu Y; Shahrezaei V; Li B; Raymond LA; Delaney KR; Murphy TH
    J Neurosci; 2004 Jan; 24(2):420-33. PubMed ID: 14724240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal.
    Sakaba T
    Neuron; 2008 Feb; 57(3):406-19. PubMed ID: 18255033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phorbol ester uncouples adenosine inhibition of presynaptic Ca2+ transients at hippocampal synapses.
    Stocca G; Lovinger DM
    Hippocampus; 2003; 13(3):355-60. PubMed ID: 12722976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal glutamate transporters regulate synaptic transmission in single synapses on CA1 hippocampal neurons.
    Kondratskaya E; Shin MC; Akaike N
    Brain Res Bull; 2010 Jan; 81(1):53-60. PubMed ID: 19665527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held.
    Korogod N; Lou X; Schneggenburger R
    J Neurosci; 2005 May; 25(21):5127-37. PubMed ID: 15917453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurosteroid-induced enhancement of short-term facilitation involves a component downstream from presynaptic calcium in hippocampal slices.
    Schiess AR; Scullin CS; Partridge LD
    J Physiol; 2006 Nov; 576(Pt 3):833-47. PubMed ID: 16931546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability.
    Deng PY; Xiao Z; Jha A; Ramonet D; Matsui T; Leitges M; Shin HS; Porter JE; Geiger JD; Lei S
    J Neurosci; 2010 Apr; 30(15):5136-48. PubMed ID: 20392936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol-dependent kinase activity regulates transmitter release from cerebellar synapses.
    Smith AJ; Sugita S; Charlton MP
    J Neurosci; 2010 Apr; 30(17):6116-21. PubMed ID: 20427669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent activation of presynaptic protein kinase C mediates post-tetanic potentiation.
    Brager DH; Cai X; Thompson SM
    Nat Neurosci; 2003 Jun; 6(6):551-2. PubMed ID: 12754518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I.
    Liu H; Dean C; Arthur CP; Dong M; Chapman ER
    J Neurosci; 2009 Jun; 29(23):7395-403. PubMed ID: 19515907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons.
    Hagler DJ; Goda Y
    J Neurophysiol; 2001 Jun; 85(6):2324-34. PubMed ID: 11387379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C.
    Lou X; Korogod N; Brose N; Schneggenburger R
    J Neurosci; 2008 Aug; 28(33):8257-67. PubMed ID: 18701688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses.
    Tyler WJ; Zhang XL; Hartman K; Winterer J; Muller W; Stanton PK; Pozzo-Miller L
    J Physiol; 2006 Aug; 574(Pt 3):787-803. PubMed ID: 16709633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse.
    Sikand P; Premkumar LS
    J Physiol; 2007 Jun; 581(Pt 2):631-47. PubMed ID: 17363391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VAMP4 Maintains a Ca
    Lin PY; Chanaday NL; Horvath PM; Ramirez DMO; Monteggia LM; Kavalali ET
    J Neurosci; 2020 Jul; 40(28):5389-5401. PubMed ID: 32532887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release.
    Wang LY; Neher E; Taschenberger H
    J Neurosci; 2008 Dec; 28(53):14450-8. PubMed ID: 19118179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents.
    Fawley JA; Hofmann ME; Andresen MC
    J Neurosci; 2016 Aug; 36(34):8957-66. PubMed ID: 27559176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal glutamate uptake Contributes to GABA synthesis and inhibitory synaptic strength.
    Mathews GC; Diamond JS
    J Neurosci; 2003 Mar; 23(6):2040-8. PubMed ID: 12657662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.
    Hu H; Shao LR; Chavoshy S; Gu N; Trieb M; Behrens R; Laake P; Pongs O; Knaus HG; Ottersen OP; Storm JF
    J Neurosci; 2001 Dec; 21(24):9585-97. PubMed ID: 11739569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.