These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19889855)

  • 1. Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning-curve analysis.
    Cronin B; Stevenson IH; Sur M; Körding KP
    J Neurophysiol; 2010 Jan; 103(1):591-602. PubMed ID: 19889855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian approach for characterizing direction tuning curves in the supplementary motor area of behaving monkeys.
    Taubman H; Vaadia E; Paz R; Chechik G
    J Neurophysiol; 2013 Jun; 109(11):2842-51. PubMed ID: 23468391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Markov chain Monte Carlo methods for decoding neural spike trains.
    Ahmadian Y; Pillow JW; Paninski L
    Neural Comput; 2011 Jan; 23(1):46-96. PubMed ID: 20964539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian active learning of neural firing rate maps with transformed gaussian process priors.
    Park M; Weller JP; Horwitz GD; Pillow JW
    Neural Comput; 2014 Aug; 26(8):1519-41. PubMed ID: 24877730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of orientation-selective inhibition in the primary visual cortex: a Bayes-Markov computational model.
    Shirazi MN
    Biol Cybern; 2004 Aug; 91(2):115-30. PubMed ID: 15340852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model.
    Jensen AC; Ditlevsen S; Kessler M; Papaspiliopoulos O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041114. PubMed ID: 23214536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.
    Liao Y; Li H; Zhang Q; Fan G; Wang Y; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6513-6. PubMed ID: 25571488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An application of reversible-jump Markov chain Monte Carlo to spike classification of multi-unit extracellular recordings.
    Nguyen DP; Frank LM; Brown EN
    Network; 2003 Feb; 14(1):61-82. PubMed ID: 12617059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation tuning curves: empirical description and estimation of parameters.
    Swindale NV
    Biol Cybern; 1998 Jan; 78(1):45-56. PubMed ID: 9518026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS).
    Ahmadi N; Constandinou TG; Bouganis CS
    PLoS One; 2018; 13(11):e0206794. PubMed ID: 30462665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian non-linear regression with spatial priors for noise reduction and error estimation in quantitative MRI with an application in T1 estimation.
    Löfstedt T; Hellström M; Bylund M; Garpebring A
    Phys Med Biol; 2020 Nov; 65(22):225036. PubMed ID: 32947277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical assessment of the stability of neural movement representations.
    Stevenson IH; Cherian A; London BM; Sachs NA; Lindberg E; Reimer J; Slutzky MW; Hatsopoulos NG; Miller LE; Kording KP
    J Neurophysiol; 2011 Aug; 106(2):764-74. PubMed ID: 21613593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian connective field modeling using a Markov Chain Monte Carlo approach.
    Invernizzi A; Haak KV; Carvalho JC; Renken RJ; Cornelissen FW
    Neuroimage; 2022 Dec; 264():119688. PubMed ID: 36280097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coding with noisy neurons: stability of tuning curve estimation strongly depends on the analysis method.
    Etzold A; Schwegler H; Eurich CW
    J Neurosci Methods; 2004 Apr; 134(2):109-19. PubMed ID: 15003377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian spiking neurons II: learning.
    Deneve S
    Neural Comput; 2008 Jan; 20(1):118-45. PubMed ID: 18045003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation.
    Linderman SW; Johnson MJ; Wilson MA; Chen Z
    J Neurosci Methods; 2016 Apr; 263():36-47. PubMed ID: 26854398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces.
    Liao Y; She X; Wang Y; Zhang S; Zhang Q; Zheng X; Principe JC
    J Neural Eng; 2015 Dec; 12(6):066014. PubMed ID: 26468607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian estimation of phase response curves.
    Nakae K; Iba Y; Tsubo Y; Fukai T; Aoyagi T
    Neural Netw; 2010 Aug; 23(6):752-63. PubMed ID: 20466516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.