These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 19889973)

  • 1. Visually evoked activity in cortical cells imaged in freely moving animals.
    Sawinski J; Wallace DJ; Greenberg DS; Grossmann S; Denk W; Kerr JN
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19557-62. PubMed ID: 19889973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion-Related Population Cortical Ca
    Zhang Q; Yao J; Guang Y; Liang S; Guan J; Qin H; Liao X; Jin W; Zhang J; Pan J; Jia H; Yan J; Feng Z; Li W; Chen X
    Front Neural Circuits; 2017; 11():24. PubMed ID: 28439229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats.
    Klioutchnikov A; Wallace DJ; Frosz MH; Zeltner R; Sawinski J; Pawlak V; Voit KM; Russell PSJ; Kerr JND
    Nat Methods; 2020 May; 17(5):509-513. PubMed ID: 32371979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term stability of cortical ensembles.
    Pérez-Ortega J; Alejandre-García T; Yuste R
    Elife; 2021 Jul; 10():. PubMed ID: 34328414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking miniaturized microscopy against two-photon calcium imaging using single-cell orientation tuning in mouse visual cortex.
    Glas A; Hübener M; Bonhoeffer T; Goltstein PM
    PLoS One; 2019; 14(4):e0214954. PubMed ID: 30947245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniaturization of two-photon microscopy for imaging in freely moving animals.
    Helmchen F; Denk W; Kerr JN
    Cold Spring Harb Protoc; 2013 Oct; 2013(10):904-13. PubMed ID: 24086055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Color Volumetric Imaging of Neuronal Activity of Cortical Columns.
    Han S; Yang W; Yuste R
    Cell Rep; 2019 May; 27(7):2229-2240.e4. PubMed ID: 31091458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats.
    Bissig D; Berkowitz BA
    Neuroimage; 2009 Feb; 44(3):627-35. PubMed ID: 19015035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice.
    Klioutchnikov A; Wallace DJ; Sawinski J; Voit KM; Groemping Y; Kerr JND
    Nat Methods; 2023 Apr; 20(4):610-616. PubMed ID: 36443485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.
    Einstein MC; Polack PO; Tran DT; Golshani P
    J Neurosci; 2017 May; 37(20):5084-5098. PubMed ID: 28432140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of visual responses by behavioral state in mouse visual cortex.
    Niell CM; Stryker MP
    Neuron; 2010 Feb; 65(4):472-9. PubMed ID: 20188652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis.
    Waterhouse BD; Azizi SA; Burne RA; Woodward DJ
    Brain Res; 1990 Apr; 514(2):276-92. PubMed ID: 2357542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous sequential cortical activity evoked by visual stimuli.
    Carrillo-Reid L; Miller JE; Hamm JP; Jackson J; Yuste R
    J Neurosci; 2015 Jun; 35(23):8813-28. PubMed ID: 26063915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network activity influences the subthreshold and spiking visual responses of pyramidal neurons in the three-layer turtle cortex.
    Wright NC; Wessel R
    J Neurophysiol; 2017 Oct; 118(4):2142-2155. PubMed ID: 28747466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual post-stimulus excitability changes in freely moving rats indicated by amplitude and peak time of evoked potentials.
    Brankack J; Klingberg F
    Acta Biol Med Ger; 1982; 41(9):801-9. PubMed ID: 7164699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Real-motion' cells in area V3A of macaque visual cortex.
    Galletti C; Battaglini PP; Fattori P
    Exp Brain Res; 1990; 82(1):67-76. PubMed ID: 2257915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of single-vessel haemodynamic responses in vivo.
    O'Herron P; Chhatbar PY; Levy M; Shen Z; Schramm AE; Lu Z; Kara P
    Nature; 2016 Jun; 534(7607):378-82. PubMed ID: 27281215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Coding of stimulus movement parameters in cat visual system].
    Sokolov EN; Satinkas R; Stabinyte D; Pleskauskas A; Vaitkyavicius H; Stanikunas R; Shvegzda A
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(2):228-35. PubMed ID: 16756130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanism of responses to movement in the visual cortex neurons unresponsive to light flicker].
    Vitanova LA; Glezer VD; Shcherbach TA; Gauzel'man VE
    Fiziol Zh SSSR Im I M Sechenova; 1983 Mar; 69(3):326-30. PubMed ID: 6852287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping stimulus feature selectivity in macaque V1 by two-photon Ca
    Ikezoe K; Amano M; Nishimoto S; Fujita I
    Neuroimage; 2018 Oct; 180(Pt A):312-323. PubMed ID: 29331450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.