These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 19890325)
1. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant. Ho WC; Heinke CO Nature; 2009 Nov; 462(7269):71-3. PubMed ID: 19890325 [TBL] [Abstract][Full Text] [Related]
2. The Compact Central Object in Cassiopeia A: A Neutron Star with Hot Polar Caps or a Black Hole? Pavlov GG; Zavlin VE; Aschenbach B; Trümper J; Sanwal D Astrophys J; 2000 Mar; 531(1):L53-L56. PubMed ID: 10673413 [TBL] [Abstract][Full Text] [Related]
3. Impacts of the Detection of Cassiopeia A Point Source. Umeda H; Nomoto K; Tsuruta S; Mineshige S Astrophys J; 2000 May; 534(2):L193-L196. PubMed ID: 10813680 [TBL] [Abstract][Full Text] [Related]
4. A 12.4-day periodicity in a close binary system after a supernova. Chen P; Gal-Yam A; Sollerman J; Schulze S; Post RS; Liu C; Ofek EO; Das KK; Fremling C; Horesh A; Katz B; Kushnir D; Kasliwal MM; Kulkarni SR; Liu D; Liu X; Miller AA; Rose K; Waxman E; Yang S; Yao Y; Zackay B; Bellm EC; Dekany R; Drake AJ; Fang Y; Fynbo JPU; Groom SL; Helou G; Irani I; Jegou du Laz T; Liu X; Mazzali PA; Neill JD; Qin YJ; Riddle RL; Sharon A; Strotjohann NL; Wold A; Yan L Nature; 2024 Jan; 625(7994):253-258. PubMed ID: 38200292 [TBL] [Abstract][Full Text] [Related]
5. A long-period, violently variable X-ray source in a young supernova remnant. De Luca A; Caraveo PA; Mereghetti S; Tiengo A; Bignami GF Science; 2006 Aug; 313(5788):814-7. PubMed ID: 16825535 [TBL] [Abstract][Full Text] [Related]
6. Thermonuclear explosions on neutron stars reveal the speed of their jets. Russell TD; Degenaar N; van den Eijnden J; Maccarone T; Tetarenko AJ; Sánchez-Fernández C; Miller-Jones JCA; Kuulkers E; Del Santo M Nature; 2024 Mar; 627(8005):763-766. PubMed ID: 38538938 [TBL] [Abstract][Full Text] [Related]
7. Collapsars as a major source of r-process elements. Siegel DM; Barnes J; Metzger BD Nature; 2019 May; 569(7755):241-244. PubMed ID: 31068724 [TBL] [Abstract][Full Text] [Related]
8. Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter. Page D; Prakash M; Lattimer JM; Steiner AW Phys Rev Lett; 2011 Feb; 106(8):081101. PubMed ID: 21405561 [TBL] [Abstract][Full Text] [Related]
9. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars. Chakrabarty D; Morgan EH; Muno MP; Galloway DK; Wijnands R; Van Der Klis M; Markwardt CB Nature; 2003 Jul; 424(6944):42-4. PubMed ID: 12840751 [TBL] [Abstract][Full Text] [Related]
10. A massive helium star with a sufficiently strong magnetic field to form a magnetar. Shenar T; Wade GA; Marchant P; Bagnulo S; Bodensteiner J; Bowman DM; Gilkis A; Langer N; Nicolas-Chené A; Oskinova L; Van Reeth T; Sana H; St-Louis N; de Oliveira AS; Todt H; Toonen S Science; 2023 Aug; 381(6659):761-765. PubMed ID: 37590342 [TBL] [Abstract][Full Text] [Related]
11. A high-mass X-ray binary descended from an ultra-stripped supernova. Richardson ND; Pavao CM; Eldridge JJ; Pablo H; Chené AN; Wysocki P; Gies DR; Younes G; Hare J Nature; 2023 Feb; 614(7946):45-47. PubMed ID: 36725992 [TBL] [Abstract][Full Text] [Related]
12. A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. De K; Kasliwal MM; Ofek EO; Moriya TJ; Burke J; Cao Y; Cenko SB; Doran GB; Duggan GE; Fender RP; Fransson C; Gal-Yam A; Horesh A; Kulkarni SR; Laher RR; Lunnan R; Manulis I; Masci F; Mazzali PA; Nugent PE; Perley DA; Petrushevska T; Piro AL; Rumsey C; Sollerman J; Sullivan M; Taddia F Science; 2018 Oct; 362(6411):201-206. PubMed ID: 30309948 [TBL] [Abstract][Full Text] [Related]
13. High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection. Sato T; Maeda K; Nagataki S; Yoshida T; Grefenstette B; Williams BJ; Umeda H; Ono M; Hughes JP Nature; 2021 Apr; 592(7855):537-540. PubMed ID: 33883732 [TBL] [Abstract][Full Text] [Related]
14. Constraining neutron-star matter with microscopic and macroscopic collisions. Huth S; Pang PTH; Tews I; Dietrich T; Le Fèvre A; Schwenk A; Trautmann W; Agarwal K; Bulla M; Coughlin MW; Van Den Broeck C Nature; 2022 Jun; 606(7913):276-280. PubMed ID: 35676430 [TBL] [Abstract][Full Text] [Related]
15. Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A. Fransson C; Barlow MJ; Kavanagh PJ; Larsson J; Jones OC; Sargent B; Meixner M; Bouchet P; Temim T; Wright GS; Blommaert JADL; Habel N; Hirschauer AS; Hjorth J; Lenkić L; Tikkanen T; Wesson R; Coulais A; Fox OD; Gastaud R; Glasse A; Jaspers J; Krause O; Lau RM; Nayak O; Rest A; Colina L; van Dishoeck EF; Güdel M; Henning T; Lagage PO; Östlin G; Ray TP; Vandenbussche B Science; 2024 Feb; 383(6685):898-903. PubMed ID: 38386759 [TBL] [Abstract][Full Text] [Related]
16. A shared accretion instability for black holes and neutron stars. Vincentelli FM; Neilsen J; Tetarenko AJ; Cavecchi Y; Castro Segura N; Del Palacio S; van den Eijnden J; Vasilopoulos G; Altamirano D; Armas Padilla M; Bailyn CD; Belloni T; Buisson DJK; Cúneo VA; Degenaar N; Knigge C; Long KS; Jiménez-Ibarra F; Milburn J; Muñoz Darias T; Özbey Arabacı M; Remillard R; Russell T Nature; 2023 Mar; 615(7950):45-49. PubMed ID: 36859580 [TBL] [Abstract][Full Text] [Related]
17. A debris disk around an isolated young neutron star. Wang Z; Chakrabarty D; Kaplan DL Nature; 2006 Apr; 440(7085):772-5. PubMed ID: 16598251 [TBL] [Abstract][Full Text] [Related]
18. Neutrino Fast Flavor Conversions in Neutron-Star Postmerger Accretion Disks. Li X; Siegel DM Phys Rev Lett; 2021 Jun; 126(25):251101. PubMed ID: 34241510 [TBL] [Abstract][Full Text] [Related]
19. Ultra-High-Energy Cosmic Rays from Young Neutron Star Winds. Blasi P; Epstein RI; Olinto AV Astrophys J; 2000 Apr; 533(2):L123-L126. PubMed ID: 10770705 [TBL] [Abstract][Full Text] [Related]