These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 19890326)

  • 1. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
    Bakr WS; Gillen JI; Peng A; Fölling S; Greiner M
    Nature; 2009 Nov; 462(7269):74-7. PubMed ID: 19890326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum simulation of quantum many-body systems with ultracold two-electron atoms in an optical lattice.
    Takahashi Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2022; 98(4):141-160. PubMed ID: 35400693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tonks-Girardeau gas of ultracold atoms in an optical lattice.
    Paredes B; Widera A; Murg V; Mandel O; Fölling S; Cirac I; Shlyapnikov GV; Hänsch TW; Bloch I
    Nature; 2004 May; 429(6989):277-81. PubMed ID: 15152247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled exchange interaction between pairs of neutral atoms in an optical lattice.
    Anderlini M; Lee PJ; Brown BL; Sebby-Strabley J; Phillips WD; Porto JV
    Nature; 2007 Jul; 448(7152):452-6. PubMed ID: 17653187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering topological states in atom-based semiconductor quantum dots.
    Kiczynski M; Gorman SK; Geng H; Donnelly MB; Chung Y; He Y; Keizer JG; Simmons MY
    Nature; 2022 Jun; 606(7915):694-699. PubMed ID: 35732762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum-gas microscope for fermionic atoms.
    Cheuk LW; Nichols MA; Okan M; Gersdorf T; Ramasesh VV; Bakr WS; Lompe T; Zwierlein MW
    Phys Rev Lett; 2015 May; 114(19):193001. PubMed ID: 26024169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of a low-entropy quantum gas of polar molecules in an optical lattice.
    Moses SA; Covey JP; Miecnikowski MT; Yan B; Gadway B; Ye J; Jin DS
    Science; 2015 Nov; 350(6261):659-62. PubMed ID: 26542566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons.
    Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC
    Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of ultracold molecules from a Fermi gas of atoms.
    Regal CA; Ticknor C; Bohn JL; Jin DS
    Nature; 2003 Jul; 424(6944):47-50. PubMed ID: 12840753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realization of a fractional quantum Hall state with ultracold atoms.
    Léonard J; Kim S; Kwan J; Segura P; Grusdt F; Repellin C; Goldman N; Greiner M
    Nature; 2023 Jul; 619(7970):495-499. PubMed ID: 37344594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems.
    Asteria L; Zahn HP; Kosch MN; Sengstock K; Weitenberg C
    Nature; 2021 Nov; 599(7886):571-575. PubMed ID: 34819679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unitary p-wave interactions between fermions in an optical lattice.
    Venu V; Xu P; Mamaev M; Corapi F; Bilitewski T; D'Incao JP; Fujiwara CJ; Rey AM; Thywissen JH
    Nature; 2023 Jan; 613(7943):262-267. PubMed ID: 36631646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum simulation of the Hubbard model with dopant atoms in silicon.
    Salfi J; Mol JA; Rahman R; Klimeck G; Simmons MY; Hollenberg LC; Rogge S
    Nat Commun; 2016 Apr; 7():11342. PubMed ID: 27094205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipolar quantum solids emerging in a Hubbard quantum simulator.
    Su L; Douglas A; Szurek M; Groth R; Ozturk SF; Krahn A; Hébert AH; Phelps GA; Ebadi S; Dickerson S; Ferlaino F; Marković O; Greiner M
    Nature; 2023 Oct; 622(7984):724-729. PubMed ID: 37880438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of multi-body interactions in a fermionic lattice clock.
    Goban A; Hutson RB; Marti GE; Campbell SL; Perlin MA; Julienne PS; D'Incao JP; Rey AM; Ye J
    Nature; 2018 Nov; 563(7731):369-373. PubMed ID: 30429544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.