These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 19890406)
1. Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface. Zhang J; Fu Y; Chowdhury MH; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Aug; 111(32):11784-11792. PubMed ID: 19890406 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. Zhang J; Fu Y; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780 [TBL] [Abstract][Full Text] [Related]
3. Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size. Zhang J; Fu Y; Chowdhury MH; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Dec; 112(1):18. PubMed ID: 20151044 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
5. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET). Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329 [TBL] [Abstract][Full Text] [Related]
6. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. Aissaoui N; Moth-Poulsen K; Käll M; Johansson P; Wilhelmsson LM; Albinsson B Nanoscale; 2017 Jan; 9(2):673-683. PubMed ID: 27942672 [TBL] [Abstract][Full Text] [Related]
7. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond. Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711 [TBL] [Abstract][Full Text] [Related]
8. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Zhang J; Fu Y; Chowdhury MH; Lakowicz JR Nano Lett; 2007 Jul; 7(7):2101-7. PubMed ID: 17580926 [TBL] [Abstract][Full Text] [Related]
9. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
10. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807 [TBL] [Abstract][Full Text] [Related]
11. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield. Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358 [TBL] [Abstract][Full Text] [Related]
12. Effects of metallic silver island films on resonance energy transfer between N,N'-(dipropyl)-tetramethyl- indocarbocyanine (Cy3)- and N,N'-(dipropyl)-tetramethyl- indodicarbocyanine (Cy5)-labeled DNA. Malicka J; Gryczynski I; Kusba J; Lakowicz JR Biopolymers; 2003 Dec; 70(4):595-603. PubMed ID: 14648769 [TBL] [Abstract][Full Text] [Related]
13. Effects of Metallic Silver Particles on Resonance Energy Transfer Between Fluorophores Bound to DNA. Lakowicz JR; Kuśba J; Shen Y; Malicka J; D'Auria S; Gryczynski Z; Gryczynski I J Fluoresc; 2003 Jan; 13(1):69-77. PubMed ID: 31588166 [TBL] [Abstract][Full Text] [Related]
14. Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler. Moroz P; Jin Z; Sugiyama Y; Lara D; Razgoniaeva N; Yang M; Kholmicheva N; Khon D; Mattoussi H; Zamkov M ACS Nano; 2018 Jun; 12(6):5657-5665. PubMed ID: 29883087 [TBL] [Abstract][Full Text] [Related]
15. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface. Bene L; Gralle M; Damjanovich L Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190 [TBL] [Abstract][Full Text] [Related]
16. Homogenous FRET-based fluorescent immunoassay for deoxynivalenol detection by controlling the distance of donor-acceptor couple. Goryacheva OA; Beloglazova NV; Goryacheva IY; De Saeger S Talanta; 2021 Apr; 225():121973. PubMed ID: 33592807 [TBL] [Abstract][Full Text] [Related]
17. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. Gonzaga-Galeana JA; Zurita-Sánchez JR J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365 [TBL] [Abstract][Full Text] [Related]
18. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202 [TBL] [Abstract][Full Text] [Related]
19. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534 [TBL] [Abstract][Full Text] [Related]
20. Distance and temperature dependency in nonoverlapping and conventional Förster resonance energy-transfer. Vuojola J; Hyppänen I; Nummela M; Kankare J; Soukka T J Phys Chem B; 2011 Nov; 115(46):13685-94. PubMed ID: 22007728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]