BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19890406)

  • 21. Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes.
    Muhr V; Würth C; Kraft M; Buchner M; Baeumner AJ; Resch-Genger U; Hirsch T
    Anal Chem; 2017 May; 89(9):4868-4874. PubMed ID: 28325045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates.
    Massey M; Algar WR; Krull UJ
    Anal Chim Acta; 2006 May; 568(1-2):181-9. PubMed ID: 17761259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating the distance limit of a metal nanoparticle based spectroscopic ruler.
    Chatterjee S; Lee JB; Valappil NV; Luo D; Menon VM
    Biomed Opt Express; 2011 Jun; 2(6):1727-33. PubMed ID: 21698032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles.
    Malicka J; Gryczynski I; Fang J; Kusba J; Lakowicz JR
    Anal Biochem; 2003 Apr; 315(2):160-9. PubMed ID: 12689825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silver nanoparticle plasmonic enhanced förster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface.
    Zhao T; Li T; Liu Y
    Nanoscale; 2017 Jul; 9(28):9841-9847. PubMed ID: 28485436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gas-phase Förster resonance energy transfer in mass-selected and trapped ions.
    Langeland J; Lindkvist TT; Kjær C; Nielsen SB
    Mass Spectrom Rev; 2024; 43(3):477-499. PubMed ID: 36514825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence lifetime correlation spectroscopic study of fluorophore-labeled silver nanoparticles.
    Ray K; Zhang J; Lakowicz JR
    Anal Chem; 2008 Oct; 80(19):7313-8. PubMed ID: 18771274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length.
    Panuganti S; Besteiro LV; Vasileiadou ES; Hoffman JM; Govorov AO; Gray SK; Kanatzidis MG; Schaller RD
    J Am Chem Soc; 2021 Mar; 143(11):4244-4252. PubMed ID: 33688726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging protein interactions by FRET microscopy: FRET measurements by sensitized emission.
    Verveer PJ; Rocks O; Harpur AG; Bastiaens PI
    CSH Protoc; 2006 Nov; 2006(6):. PubMed ID: 22485984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of Protein Interactions in the Cytoplasm and Periplasm of
    Meiresonne NY; Alexeeva S; van der Ploeg R; den Blaauwen T
    Bio Protoc; 2018 Jan; 8(2):e2697. PubMed ID: 34179246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enabling Förster Resonance Energy Transfer from Large Nanocrystals through Energy Migration.
    Deng R; Wang J; Chen R; Huang W; Liu X
    J Am Chem Soc; 2016 Dec; 138(49):15972-15979. PubMed ID: 27960320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disentanglement of excited-state dynamics with implications for FRET measurements: two-dimensional electronic spectroscopy of a BODIPY-functionalized cavitand.
    Otto JP; Wang L; Pochorovski I; Blau SM; Aspuru-Guzik A; Bao Z; Engel GS; Chiu M
    Chem Sci; 2018 Apr; 9(15):3694-3703. PubMed ID: 29780500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer.
    Szmacinski H; Ray K; Lakowicz JR
    J Biophotonics; 2009 Apr; 2(4):243-52. PubMed ID: 19367592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits.
    Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA
    J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures.
    Ghenuche P; de Torres J; Moparthi SB; Grigoriev V; Wenger J
    Nano Lett; 2014 Aug; 14(8):4707-14. PubMed ID: 25020141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dependence of FRET efficiency on distance in single donor-acceptor pairs.
    Osad'ko IS
    J Chem Phys; 2015 Mar; 142(12):125102. PubMed ID: 25833609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes.
    Loura LM
    Int J Mol Sci; 2012 Nov; 13(11):15252-70. PubMed ID: 23203123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.