BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19890539)

  • 1. The interaction between gold nanoparticles and cationic and anionic dyes: enhanced UV-visible absorption.
    Narband N; Uppal M; Dunnill CW; Hyett G; Wilson M; Parkin IP
    Phys Chem Chem Phys; 2009 Nov; 11(44):10513-8. PubMed ID: 19890539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes.
    Kitching H; Kenyon AJ; Parkin IP
    Phys Chem Chem Phys; 2014 Apr; 16(13):6050-9. PubMed ID: 24554190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of gold nanoparticle aggregation: experiments and modeling.
    Kim T; Lee CH; Joo SW; Lee K
    J Colloid Interface Sci; 2008 Feb; 318(2):238-43. PubMed ID: 18022182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions.
    Reynolds AJ; Haines AH; Russell DA
    Langmuir; 2006 Jan; 22(3):1156-63. PubMed ID: 16430279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.
    Hassan SS; Sirajuddin ; Solangi AR; Agheem MH; Junejo Y; Kalwar NH; Tagar ZA
    J Hazard Mater; 2011 Jun; 190(1-3):1030-6. PubMed ID: 21561710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(5):2178-85. PubMed ID: 18220434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts.
    MeenaKumari M; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():632-8. PubMed ID: 25128675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry.
    Wang Y; He X; Wang K; Zhang X; Tan W
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):75-9. PubMed ID: 19481910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic cation induced one-dimensional assembly of poly(acrylic acid)-1-dodecanethiol-stabilized gold nanoparticles.
    Zhu L; Xue D; Wang Z
    Langmuir; 2008 Oct; 24(20):11385-9. PubMed ID: 18808165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic investigations on the photodegradation of toluidine blue dye using cadmium sulphide nanoparticles prepared by a novel method.
    Neelakandeswari N; Sangami G; Dharmaraj N; Taek NK; Kim HY
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1592-8. PubMed ID: 21382744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions.
    Ojea-Jiménez I; Puntes V
    J Am Chem Soc; 2009 Sep; 131(37):13320-7. PubMed ID: 19711893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa.
    Husseiny MI; El-Aziz MA; Badr Y; Mahmoud MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1003-6. PubMed ID: 17084659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and activity of apoferritin-stabilized gold nanoparticles.
    Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interparticle interactions in glutathione mediated assembly of gold nanoparticles.
    Lim II; Mott D; Ip W; Njoki PN; Pan Y; Zhou S; Zhong CJ
    Langmuir; 2008 Aug; 24(16):8857-63. PubMed ID: 18642936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids.
    Aryal S; Remant BK; Narayan B; Kim CK; Kim HY
    J Colloid Interface Sci; 2006 Jul; 299(1):191-7. PubMed ID: 16499918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.