These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 19890887)

  • 41. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds.
    Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.
    Chien KB; Shah RN
    Acta Biomater; 2012 Feb; 8(2):694-703. PubMed ID: 22019761
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Porous hollow membrane sheet for tissue engineering applications.
    Hadjizadeh A; Mohebbi-Kalhori D
    J Biomed Mater Res A; 2010 Jun; 93(3):1140-50. PubMed ID: 19768796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reconstruction of 3D stacked hepatocyte tissues using degradable, microporous poly(d,l-lactide-co-glycolide) membranes.
    Kasuya J; Sudo R; Tamogami R; Masuda G; Mitaka T; Ikeda M; Tanishita K
    Biomaterials; 2012 Mar; 33(9):2693-700. PubMed ID: 22236830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo.
    Feng B; Jinkang Z; Zhen W; Jianxi L; Jiang C; Jian L; Guolin M; Xin D
    Biomed Mater; 2011 Feb; 6(1):015007. PubMed ID: 21206002
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds.
    Hajj-Hassan M; Khayyat-Kholghi M; Wang H; Chodavarapu V; Henderson JE
    J Biomed Mater Res A; 2011 Nov; 99(2):269-74. PubMed ID: 21858915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers.
    Berry SM; Warren SP; Hilgart DA; Schworer AT; Pabba S; Gobin AS; Cohn RW; Keynton RS
    Biomaterials; 2011 Mar; 32(7):1872-9. PubMed ID: 21144583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo evaluation of 13-93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model.
    Fu Q; Rahaman MN; Bal BS; Kuroki K; Brown RF
    J Biomed Mater Res A; 2010 Oct; 95(1):235-44. PubMed ID: 20574983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction.
    Feng C; Xu YM; Fu Q; Zhu WD; Cui L; Chen J
    J Biomed Mater Res A; 2010 Jul; 94(1):317-25. PubMed ID: 20166222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds.
    Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL
    Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of 3D fibroin/chitosan blend porous scaffold for tissue engineering via a simplified method.
    Ruan Y; Lin H; Yao J; Chen Z; Shao Z
    Macromol Biosci; 2011 Mar; 11(3):419-26. PubMed ID: 21218404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering.
    Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS
    Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epoxy-amine synthesised hydrogel scaffolds for soft-tissue engineering.
    Hamid ZA; Blencowe A; Ozcelik B; Palmer JA; Stevens GW; Abberton KM; Morrison WA; Penington AJ; Qiao GG
    Biomaterials; 2010 Sep; 31(25):6454-67. PubMed ID: 20542558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone).
    Theiler S; Mela P; Diamantouros SE; Jockenhoevel S; Keul H; Möller M
    Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced cell colonization of collagen scaffold by ultraviolet/ozone surface processing.
    Liu C; McKenna FM; Liang H; Johnstone A; Abel EW
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1305-14. PubMed ID: 20218815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.