These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19890887)

  • 61. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells.
    Sellgren KL; Ma T
    J Tissue Eng Regen Med; 2012 Jan; 6(1):49-59. PubMed ID: 21308991
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion.
    Papadimitropoulos A; Riboldi SA; Tonnarelli B; Piccinini E; Woodruff MA; Hutmacher DW; Martin I
    J Tissue Eng Regen Med; 2013 Mar; 7(3):183-91. PubMed ID: 22095721
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture.
    Xing Q; Zhao F; Chen S; McNamara J; Decoster MA; Lvov YM
    Acta Biomater; 2010 Jun; 6(6):2132-9. PubMed ID: 20035906
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration.
    Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK
    Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process.
    Autissier A; Le Visage C; Pouzet C; Chaubet F; Letourneur D
    Acta Biomater; 2010 Sep; 6(9):3640-8. PubMed ID: 20215057
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-resolution 1.5-Tesla magnetic resonance imaging for tissue-engineered constructs: a noninvasive tool to assess three-dimensional scaffold architecture and cell seeding.
    Poirier-Quinot M; Frasca G; Wilhelm C; Luciani N; Ginefri JC; Darrasse L; Letourneur D; Le Visage C; Gazeau F
    Tissue Eng Part C Methods; 2010 Apr; 16(2):185-200. PubMed ID: 19438301
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds.
    Moisenovich MM; Pustovalova OL; Arhipova AY; Vasiljeva TV; Sokolova OS; Bogush VG; Debabov VG; Sevastianov VI; Kirpichnikov MP; Agapov II
    J Biomed Mater Res A; 2011 Jan; 96(1):125-31. PubMed ID: 21105160
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Three-dimensional tissue scaffolds from interbonded poly(ε-caprolactone) fibrous matrices with controlled porosity.
    Tang Y; Wong C; Wang H; Sutti A; Kirkland M; Wang X; Lin T
    Tissue Eng Part C Methods; 2011 Feb; 17(2):209-18. PubMed ID: 20799890
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold.
    Cheng K; Kisaalita WS
    Biotechnol Prog; 2010; 26(3):838-46. PubMed ID: 20196160
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding.
    Melchels FP; Tonnarelli B; Olivares AL; Martin I; Lacroix D; Feijen J; Wendt DJ; Grijpma DW
    Biomaterials; 2011 Apr; 32(11):2878-84. PubMed ID: 21288567
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimensional fiber deposition method.
    Sun Y; Finne-Wistrand A; Albertsson AC; Xing Z; Mustafa K; Hendrikson WJ; Grijpma DW; Moroni L
    J Biomed Mater Res A; 2012 Oct; 100(10):2739-49. PubMed ID: 22623412
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigation of microstructure, mechanical properties and cellular viability of poly(L-lactic acid) tissue engineering scaffolds prepared by different thermally induced phase separation protocols.
    Molladavoodi S; Gorbet M; Medley J; Kwon HJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():186-97. PubMed ID: 23122716
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch.
    Huang CC; Liao CK; Yang MJ; Chen CH; Hwang SM; Hung YW; Chang Y; Sung HW
    Biomaterials; 2010 Aug; 31(24):6218-27. PubMed ID: 20537702
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering applications.
    Machado JL; Giehl IC; Nardi NB; dos Santos LA
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1814-9. PubMed ID: 21342838
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Self assembled temperature responsive surfaces for generation of cell patches for bone tissue engineering.
    Valmikinathan CM; Chang W; Xu J; Yu X
    Biofabrication; 2012 Sep; 4(3):035006. PubMed ID: 22914662
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds.
    Shi JG; Fu WJ; Wang XX; Xu YD; Li G; Hong BF; Wang Y; Du ZY; Zhang X
    J Biomed Mater Res A; 2012 Oct; 100(10):2612-22. PubMed ID: 22615210
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds.
    Bat E; Kothman BH; Higuera GA; van Blitterswijk CA; Feijen J; Grijpma DW
    Biomaterials; 2010 Nov; 31(33):8696-705. PubMed ID: 20739060
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS).
    Zeinali R; Del Valle LJ; Torras J; Puiggalí J
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33800709
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.
    Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J
    Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.