These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 19890946)
1. Effects of the essential oil constituent thymol and other neuroactive chemicals on flight motor activity and wing beat frequency in the blowfly Phaenicia sericata. Waliwitiya R; Belton P; Nicholson RA; Lowenberger CA Pest Manag Sci; 2010 Mar; 66(3):277-89. PubMed ID: 19890946 [TBL] [Abstract][Full Text] [Related]
2. Plant terpenoids: acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata. Waliwitiya R; Belton P; Nicholson RA; Lowenberger CA J Econ Entomol; 2012 Feb; 105(1):72-84. PubMed ID: 22420258 [TBL] [Abstract][Full Text] [Related]
3. Octopamine and chlordimeform enhance sensory responsiveness and production of the flight motor pattern in developing and adult moths. Kinnamon SC; Klaassen LW; Kammer AE; Claassen D J Neurobiol; 1984 Jul; 15(4):283-93. PubMed ID: 6090587 [TBL] [Abstract][Full Text] [Related]
4. Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vicina. Balint CN; Dickinson MH J Exp Biol; 2004 Oct; 207(Pt 22):3813-38. PubMed ID: 15472014 [TBL] [Abstract][Full Text] [Related]
5. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. Frazier MR; Harrison JF; Kirkton SD; Roberts SP J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301 [TBL] [Abstract][Full Text] [Related]
6. Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera. Hyatt CJ; Maughan DW Biophys J; 1994 Sep; 67(3):1149-54. PubMed ID: 7811927 [TBL] [Abstract][Full Text] [Related]
7. Dipteran flight motor pattern: invariabilities and changes during postlarval development. Kutsch W; Hug W J Neurobiol; 1981 Jan; 12(1):1-14. PubMed ID: 7205250 [TBL] [Abstract][Full Text] [Related]
8. Effects of octopamine, dopamine, and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta. Claassen DE; Kammer AE J Neurobiol; 1986 Jan; 17(1):1-14. PubMed ID: 3088211 [TBL] [Abstract][Full Text] [Related]
9. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: structures and mutual dye coupling. Schlurmann M; Hausen K J Comp Neurol; 2007 Jan; 500(3):448-64. PubMed ID: 17120285 [TBL] [Abstract][Full Text] [Related]
10. Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth Manduca sexta. Tu MS; Daniel TL J Exp Biol; 2004 Dec; 207(Pt 26):4651-62. PubMed ID: 15579560 [TBL] [Abstract][Full Text] [Related]
11. Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons. García DA; Bujons J; Vale C; Suñol C Neuropharmacology; 2006 Jan; 50(1):25-35. PubMed ID: 16185724 [TBL] [Abstract][Full Text] [Related]
12. The molecular trigger for high-speed wing beats in a bee. Iwamoto H; Yagi N Science; 2013 Sep; 341(6151):1243-6. PubMed ID: 23970560 [TBL] [Abstract][Full Text] [Related]
13. The energetic cost of variations in wing span and wing asymmetry in the zebra finch Taeniopygia guttata. Hambly C; Harper EJ; Speakman JR J Exp Biol; 2004 Oct; 207(Pt 22):3977-84. PubMed ID: 15472028 [TBL] [Abstract][Full Text] [Related]
14. [Achievement of high frequencies of motor activity in insects]. Sviderskiĭ VL Usp Fiziol Nauk; 1971; 2(3):105-22. PubMed ID: 4949778 [No Abstract] [Full Text] [Related]
15. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity. Kutsch W; Berger S; Kautz H J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802 [TBL] [Abstract][Full Text] [Related]
16. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. Lindhe Norberg UM; Winter Y J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205 [TBL] [Abstract][Full Text] [Related]
17. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
18. The aerodynamics of hovering flight in Drosophila. Fry SN; Sayaman R; Dickinson MH J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772 [TBL] [Abstract][Full Text] [Related]
19. A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. Ishihara D; Horie T; Denda M J Exp Biol; 2009 Jan; 212(Pt 1):1-10. PubMed ID: 19088205 [TBL] [Abstract][Full Text] [Related]
20. Flight muscles polymorphism in a flightless bug, Pyrrhocoris apterus (L.): developmental pattern, biochemical profile and endocrine control. Socha R; Sula J J Insect Physiol; 2006 Mar; 52(3):231-9. PubMed ID: 16388820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]