BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19891004)

  • 1. Prediction of the enantioselectivity of lipases and esterases by molecular docking method with modified force field parameters.
    Ji L; Xiaoling T; Hongwei Y
    Biotechnol Bioeng; 2010 Mar; 105(4):687-96. PubMed ID: 19891004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical profiling in silico--predicting substrate specificities of large enzyme families.
    Tyagi S; Pleiss J
    J Biotechnol; 2006 Jun; 124(1):108-16. PubMed ID: 16519956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of lipase enantioselectivity by engineering the substrate binding site and access channel.
    Lafaquière V; Barbe S; Puech-Guenot S; Guieysse D; Cortés J; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2009 Nov; 10(17):2760-71. PubMed ID: 19816890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting substrates by docking high-energy intermediates to enzyme structures.
    Hermann JC; Ghanem E; Li Y; Raushel FM; Irwin JJ; Shoichet BK
    J Am Chem Soc; 2006 Dec; 128(49):15882-91. PubMed ID: 17147401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking.
    Juhl PB; Trodler P; Tyagi S; Pleiss J
    BMC Struct Biol; 2009 Jun; 9():39. PubMed ID: 19493341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GDSL family of serine esterases/lipases.
    Akoh CC; Lee GC; Liaw YC; Huang TH; Shaw JF
    Prog Lipid Res; 2004 Nov; 43(6):534-52. PubMed ID: 15522763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical stereodescriptors of atomic chiral centers.
    Zhang QY; Aires-de-Sousa J
    J Chem Inf Model; 2006; 46(6):2278-87. PubMed ID: 17125170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements of enzyme activity and enantioselectivity via combined substrate engineering and covalent immobilization.
    Wang PY; Tsai SW; Chen TL
    Biotechnol Bioeng; 2008 Oct; 101(3):460-9. PubMed ID: 18435484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselectivity prediction of CYP1A2-mediated phase I metabolism.
    Jung J; Kim ND; Kim SY; Choi I; Cho KH; Oh WS; Kim DN; No KT
    J Chem Inf Model; 2008 May; 48(5):1074-80. PubMed ID: 18412330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases.
    Henke E; Bornscheuer UT; Schmid RD; Pleiss J
    Chembiochem; 2003 Jun; 4(6):485-93. PubMed ID: 12794858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods to increase enantioselectivity of lipases and esterases.
    Bornscheuer UT
    Curr Opin Biotechnol; 2002 Dec; 13(6):543-7. PubMed ID: 12482512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational automatic search method for stable docking models of protein and ligand.
    Mizutani MY; Tomioka N; Itai A
    J Mol Biol; 1994 Oct; 243(2):310-26. PubMed ID: 7932757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of HIV-1 integrase/viral DNA interactions in the catalytic domain by fast molecular docking.
    Adesokan AA; Roberts VA; Lee KW; Lins RD; Briggs JM
    J Med Chem; 2004 Feb; 47(4):821-8. PubMed ID: 14761184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning from directed evolution: theoretical investigations into cooperative mutations in lipase enantioselectivity.
    Bocola M; Otte N; Jaeger KE; Reetz MT; Thiel W
    Chembiochem; 2004 Feb; 5(2):214-23. PubMed ID: 14760743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics, and density functional theoretical calculations.
    Park JY; Harris D
    J Med Chem; 2003 Apr; 46(9):1645-60. PubMed ID: 12699383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of short chain fatty acids from cream lipids by commercial lipases and esterases.
    Saerens K; Descamps D; Dewettinck K
    Biotechnol Lett; 2008 Feb; 30(2):311-5. PubMed ID: 17914608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the catalytic mechanism of staphylococcal lipases using carbamate substrates: chain length selectivity, interfacial activation, and cofactor dependence.
    Simons JW; Boots JW; Kats MP; Slotboom AJ; Egmond MR; Verheij HM
    Biochemistry; 1997 Nov; 36(47):14539-50. PubMed ID: 9398172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.