BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19891442)

  • 1. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm.
    Perrault SD; Chan WC
    J Am Chem Soc; 2009 Dec; 131(47):17042-3. PubMed ID: 19891442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates.
    Hussain I; Zhang H; Brust M; Barauskas J; Cooper AI
    J Colloid Interface Sci; 2010 Oct; 350(1):368-72. PubMed ID: 20609445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly(vinylpyridine).
    Akamatsu K; Shimada M; Tsuruoka T; Nawafune H; Fujii S; Nakamura Y
    Langmuir; 2010 Jan; 26(2):1254-9. PubMed ID: 19817404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of the transition point between quasi-spherical and cubic nanoparticles in a two-step seed-mediated growth method.
    Dovgolevsky E; Haick H
    Small; 2008 Nov; 4(11):2059-66. PubMed ID: 18932188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.
    Lu L; Ai K; Ozaki Y
    Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and shape separation of gold nanoparticles with preparative gel electrophoresis.
    Xu X; Caswell KK; Tucker E; Kabisatpathy S; Brodhacker KL; Scrivens WA
    J Chromatogr A; 2007 Oct; 1167(1):35-41. PubMed ID: 17804004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of gold nanoparticle aggregation: experiments and modeling.
    Kim T; Lee CH; Joo SW; Lee K
    J Colloid Interface Sci; 2008 Feb; 318(2):238-43. PubMed ID: 18022182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):374-81. PubMed ID: 19324587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors.
    Lohse SE; Dahl JA; Hutchison JE
    Langmuir; 2010 May; 26(10):7504-11. PubMed ID: 20180591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and self-assembly of highly monodispersed quasispherical gold nanoparticles.
    Huang Y; Kim DH
    Langmuir; 2011 Nov; 27(22):13861-7. PubMed ID: 21985465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis.
    Meyre ME; Tréguer-Delapierre M; Faure C
    Langmuir; 2008 May; 24(9):4421-5. PubMed ID: 18402491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and activity of apoferritin-stabilized gold nanoparticles.
    Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution.
    Raghunandan D; Bedre MD; Basavaraja S; Sawle B; Manjunath SY; Venkataraman A
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):235-40. PubMed ID: 20451362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltammetric monitoring of gold nanoparticle formation facilitated by glycyl-L-tyrosine: relation to electronic spectra and transmission electron microscopy images.
    Booth JM; Bhargava SK; Bond AM; O'Mullane AP
    J Phys Chem B; 2006 Jun; 110(25):12419-26. PubMed ID: 16800568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.