These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19891795)

  • 1. AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM.
    Yoon S; Kim S
    BMC Med Inform Decis Mak; 2009 Nov; 9 Suppl 1(Suppl 1):S1. PubMed ID: 19891795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data.
    Zhou X; Tuck DP
    Bioinformatics; 2007 May; 23(9):1106-14. PubMed ID: 17494773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE.
    Niijima S; Kuhara S
    BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis.
    Tang Y; Zhang YQ; Huang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):365-81. PubMed ID: 17666757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple SVM-RFE for gene selection in cancer classification with expression data.
    Duan KB; Rajapakse JC; Wang H; Azuaje F
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):228-34. PubMed ID: 16220686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics.
    Lin X; Li C; Zhang Y; Su B; Fan M; Wei H
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29278382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications.
    Wei L; Yang Y; Nishikawa RM; Jiang Y
    IEEE Trans Med Imaging; 2005 Mar; 24(3):371-80. PubMed ID: 15754987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading.
    Sahran S; Albashish D; Abdullah A; Shukor NA; Hayati Md Pauzi S
    Artif Intell Med; 2018 May; 87():78-90. PubMed ID: 29680688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data.
    Zhang X; Lu X; Shi Q; Xu XQ; Leung HC; Harris LN; Iglehart JD; Miron A; Liu JS; Wong WH
    BMC Bioinformatics; 2006 Apr; 7():197. PubMed ID: 16606446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.
    Zyout I; Czajkowska J; Grzegorzek M
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():95-107. PubMed ID: 25795630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Margin-maximised redundancy-minimised SVM-RFE for diagnostic classification of mammograms.
    Kim S
    Int J Data Min Bioinform; 2014; 10(4):374-90. PubMed ID: 25946884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer aided detection system for micro calcifications in digital mammograms.
    Mohamed H; Mabrouk MS; Sharawy A
    Comput Methods Programs Biomed; 2014 Oct; 116(3):226-35. PubMed ID: 24909786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVM-RFE based feature selection for tandem mass spectrum quality assessment.
    Ding J; Shi J; Wu FX
    Int J Data Min Bioinform; 2011; 5(1):73-88. PubMed ID: 21491845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.
    Huang ML; Hung YH; Lee WM; Li RK; Jiang BR
    ScientificWorldJournal; 2014; 2014():795624. PubMed ID: 25295306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.
    Zhang F; Kaufman HL; Deng Y; Drabier R
    BMC Med Genomics; 2013; 6 Suppl 1(Suppl 1):S4. PubMed ID: 23369435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction.
    Shi P; Ray S; Zhu Q; Kon MA
    BMC Bioinformatics; 2011 Sep; 12():375. PubMed ID: 21939564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.