BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19892179)

  • 21. Organelle proteomics: reduction of sample complexity by enzymatic in-gel selection of native proteins.
    Reisinger V; Eichacker LA
    Methods Mol Biol; 2009; 564():325-33. PubMed ID: 19544031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organelle proteomics: implications for subcellular fractionation in proteomics.
    Huber LA; Pfaller K; Vietor I
    Circ Res; 2003 May; 92(9):962-8. PubMed ID: 12750306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study.
    Chaiyarit S; Thongboonkerd V
    Anal Biochem; 2009 Nov; 394(2):249-58. PubMed ID: 19622339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers.
    Lund R; Leth-Larsen R; Jensen ON; Ditzel HJ
    J Proteome Res; 2009 Jun; 8(6):3078-90. PubMed ID: 19341246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins.
    Li Kw; Hornshaw MP; van Minnen J; Smalla KH; Gundelfinger ED; Smit AB
    J Proteome Res; 2005; 4(3):725-33. PubMed ID: 15952719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subcellular protein extraction from human pancreatic cancer tissues.
    Börner A; Warnken U; Schnölzer M; Hagen Jv; Giese N; Bauer A; Hoheisel J
    Biotechniques; 2009 Apr; 46(4):297-304. PubMed ID: 19450236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential detergent extraction prior to mass spectrometry analysis.
    McCarthy FM; Cooksey AM; Burgess SC
    Methods Mol Biol; 2009; 528():110-8. PubMed ID: 19153687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunoisolation and subfractionation of synaptic vesicle proteins.
    Burré J; Zimmermann H; Volknandt W
    Anal Biochem; 2007 Mar; 362(2):172-81. PubMed ID: 17266918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Approaches to Characterize Organelle, Compartment, or Structure Purity.
    Mueller SJ; Hoernstein SN; Reski R
    Methods Mol Biol; 2017; 1511():13-28. PubMed ID: 27730599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells.
    Bürckstümmer T; Bennett KL; Preradovic A; Schütze G; Hantschel O; Superti-Furga G; Bauch A
    Nat Methods; 2006 Dec; 3(12):1013-9. PubMed ID: 17060908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex proteome prefractionation using microscale solution isoelectrofocusing.
    Tang HY; Speicher DW
    Expert Rev Proteomics; 2005 Jun; 2(3):295-306. PubMed ID: 16000077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of mass spectrometry in proteomics.
    Guerrera IC; Kleiner O
    Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chloroplast isolation and affinity chromatography for enrichment of low-abundant proteins in complex proteomes.
    Bayer RG; Stael S; Teige M
    Methods Mol Biol; 2015; 1295():211-23. PubMed ID: 25820724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free-flow electrophoresis in the proteomic era: a technique in flux.
    Islinger M; Eckerskorn C; Völkl A
    Electrophoresis; 2010 Jun; 31(11):1754-63. PubMed ID: 20506416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of organelles within the nervous system: impact on brain and organelle functions.
    Tribl F; Meyer HE; Marcus K
    Expert Rev Proteomics; 2008 Apr; 5(2):333-51. PubMed ID: 18466061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sub-proteome processing: isolation of neuromelanin granules from the human brain.
    Tribl F
    Methods Mol Biol; 2009; 566():95-107. PubMed ID: 20058167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction proteomics.
    Monti M; Orrù S; Pagnozzi D; Pucci P
    Biosci Rep; 2005; 25(1-2):45-56. PubMed ID: 16222419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.
    Zhang Y; Zhang Y; Adachi J; Olsen JV; Shi R; de Souza G; Pasini E; Foster LJ; Macek B; Zougman A; Kumar C; Wisniewski JR; Jun W; Mann M
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D771-9. PubMed ID: 17090601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis.
    Vercauteren FG; Arckens L; Quirion R
    Amino Acids; 2007 Sep; 33(3):405-14. PubMed ID: 17136510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.