BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 19892241)

  • 1. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart.
    Anderson EJ; Kypson AP; Rodriguez E; Anderson CA; Lehr EJ; Neufer PD
    J Am Coll Cardiol; 2009 Nov; 54(20):1891-8. PubMed ID: 19892241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired substrate-mediated cardiac mitochondrial complex I respiration with unaltered regulation of fatty acid metabolism and oxidative stress status in type 2 diabetic Asian Indians.
    Jayakumari NR; Rajendran RS; Sivasailam A; Vimala SS; Nanda S; Manjunatha S; Pillai VV; Karunakaran J; Gopala S
    J Diabetes; 2020 Jul; 12(7):542-555. PubMed ID: 32125087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Honokiol regulates mitochondrial substrate utilization and cellular fatty acid metabolism in diabetic mice heart.
    Jayakumari NR; Rajendran RS; Sivasailam A; Parambil ST; Reghuvaran AC; Sreelatha HV; Gopala S
    Eur J Pharmacol; 2021 Apr; 896():173918. PubMed ID: 33529726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis.
    Lehman JJ; Boudina S; Banke NH; Sambandam N; Han X; Young DM; Leone TC; Gross RW; Lewandowski ED; Abel ED; Kelly DP
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H185-96. PubMed ID: 18487436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways.
    Anderson EJ; Rodriguez E; Anderson CA; Thayne K; Chitwood WR; Kypson AP
    Am J Physiol Heart Circ Physiol; 2011 Jan; 300(1):H118-24. PubMed ID: 21076025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.
    Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction as an arrhythmogenic substrate: a translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops.
    Montaigne D; Marechal X; Lefebvre P; Modine T; Fayad G; Dehondt H; Hurt C; Coisne A; Koussa M; Remy-Jouet I; Zerimech F; Boulanger E; Lacroix D; Staels B; Neviere R
    J Am Coll Cardiol; 2013 Oct; 62(16):1466-73. PubMed ID: 23644086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload.
    Elezaby A; Sverdlov AL; Tu VH; Soni K; Luptak I; Qin F; Liesa M; Shirihai OS; Rimer J; Schaffer JE; Colucci WS; Miller EJ
    J Mol Cell Cardiol; 2015 Feb; 79():275-83. PubMed ID: 25497302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II.
    Garnier A; Zoll J; Fortin D; N'Guessan B; Lefebvre F; Geny B; Mettauer B; Veksler V; Ventura-Clapier R
    Circ Heart Fail; 2009 Jul; 2(4):342-50. PubMed ID: 19808358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the peroxisome proliferator-activated receptor alpha pathway in pathological remodeling of the diabetic heart.
    Finck BN
    Curr Opin Clin Nutr Metab Care; 2004 Jul; 7(4):391-6. PubMed ID: 15192440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3.
    Bugger H; Boudina S; Hu XX; Tuinei J; Zaha VG; Theobald HA; Yun UJ; McQueen AP; Wayment B; Litwin SE; Abel ED
    Diabetes; 2008 Nov; 57(11):2924-32. PubMed ID: 18678617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction.
    Faerber G; Barreto-Perreia F; Schoepe M; Gilsbach R; Schrepper A; Schwarzer M; Mohr FW; Hein L; Doenst T
    J Thorac Cardiovasc Surg; 2011 Feb; 141(2):492-500, 500.e1. PubMed ID: 20447656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts.
    Duicu OM; Privistirescu A; Wolf A; Petruş A; Dănilă MD; Raţiu CD; Muntean DM; Sturza A
    Can J Physiol Pharmacol; 2017 Nov; 95(11):1376-1382. PubMed ID: 28738167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury.
    Lou PH; Zhang L; Lucchinetti E; Heck M; Affolter A; Gandhi M; Kienesberger PC; Hersberger M; Clanachan AS; Zaugg M
    Cardiovasc Res; 2013 Feb; 97(2):251-61. PubMed ID: 23097573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbed Fatty Acid Oxidation, Endoplasmic Reticulum Stress, and Apoptosis in Left Ventricle of Patients With Type 2 Diabetes.
    Ljubkovic M; Gressette M; Bulat C; Cavar M; Bakovic D; Fabijanic D; Grkovic I; Lemaire C; Marinovic J
    Diabetes; 2019 Oct; 68(10):1924-1933. PubMed ID: 31391173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual peroxisome-proliferator-activated-receptor-α/γ activation inhibits SIRT1-PGC1α axis and causes cardiac dysfunction.
    Kalliora C; Kyriazis ID; Oka SI; Lieu MJ; Yue Y; Area-Gomez E; Pol CJ; Tian Y; Mizushima W; Chin A; Scerbo D; Schulze PC; Civelek M; Sadoshima J; Madesh M; Goldberg IJ; Drosatos K
    JCI Insight; 2019 Aug; 5(17):. PubMed ID: 31393858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose.
    Bhatt NM; Aon MA; Tocchetti CG; Shen X; Dey S; Ramirez-Correa G; O'Rourke B; Gao WD; Cortassa S
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(4):H291-302. PubMed ID: 25485897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes.
    Bombicino SS; Iglesias DE; Rukavina-Mikusic IA; Buchholz B; Gelpi RJ; Boveris A; Valdez LB
    Free Radic Biol Med; 2017 Nov; 112():267-276. PubMed ID: 28756312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via PPARγ activation?
    Anderson EJ; Thayne KA; Harris M; Shaikh SR; Darden TM; Lark DS; Williams JM; Chitwood WR; Kypson AP; Rodriguez E
    Antioxid Redox Signal; 2014 Sep; 21(8):1156-63. PubMed ID: 24597798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy.
    Wang SY; Zhu S; Wu J; Zhang M; Xu Y; Xu W; Cui J; Yu B; Cao W; Liu J
    J Mol Med (Berl); 2020 Feb; 98(2):245-261. PubMed ID: 31897508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.