These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 19892977)
1. Dynamical steering and electronic excitation in NO scattering from a gold surface. Shenvi N; Roy S; Tully JC Science; 2009 Nov; 326(5954):829-32. PubMed ID: 19892977 [TBL] [Abstract][Full Text] [Related]
2. Inverse velocity dependence of vibrationally promoted electron emission from a metal surface. Nahler NH; White JD; Larue J; Auerbach DJ; Wodtke AM Science; 2008 Aug; 321(5893):1191-4. PubMed ID: 18755972 [TBL] [Abstract][Full Text] [Related]
3. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics. Mahapatra S Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094 [TBL] [Abstract][Full Text] [Related]
4. Role of vibrationally excited NO in promoting electron emission when colliding with a metal surface: a nonadiabatic dynamic model. Katz G; Zeiri Y; Kosloff R J Phys Chem B; 2005 Oct; 109(40):18876-80. PubMed ID: 16853429 [TBL] [Abstract][Full Text] [Related]
5. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer. Golibrzuch K; Shirhatti PR; Altschäffel J; Rahinov I; Auerbach DJ; Wodtke AM; Bartels C J Phys Chem A; 2013 Sep; 117(36):8750-60. PubMed ID: 23808714 [TBL] [Abstract][Full Text] [Related]
6. Nonadiabatic dynamics at metal surfaces: independent-electron surface hopping. Shenvi N; Roy S; Tully JC J Chem Phys; 2009 May; 130(17):174107. PubMed ID: 19425769 [TBL] [Abstract][Full Text] [Related]
7. Implications and applications of current-induced dynamics in molecular junctions. Jorn R; Seideman T Acc Chem Res; 2010 Sep; 43(9):1186-94. PubMed ID: 20465221 [TBL] [Abstract][Full Text] [Related]
9. Dynamics and mechanism of the E-->D, D', beta, gamma, and delta nonadiabatic transitions induced in molecular iodine by collisions with CF4 and SF6 molecules. Akopyan ME; Lukashov SS; Poretsky SA; Pravilov AM; Torgashkova AS; Buchachenko AA; Suleimanov YV J Chem Phys; 2008 Sep; 129(11):114309. PubMed ID: 19044962 [TBL] [Abstract][Full Text] [Related]
10. Electron kinetic energies from vibrationally promoted surface exoemission: evidence for a vibrational autodetachment mechanism. LaRue JL; Schäfer T; Matsiev D; Velarde L; Nahler NH; Auerbach DJ; Wodtke AM J Phys Chem A; 2011 Dec; 115(50):14306-14. PubMed ID: 22112161 [TBL] [Abstract][Full Text] [Related]
11. Vibrationally promoted electron emission from low work-function metal surfaces. White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM J Chem Phys; 2006 Feb; 124(6):64702. PubMed ID: 16483224 [TBL] [Abstract][Full Text] [Related]
12. Conversion of large-amplitude vibration to electron excitation at a metal surface. White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM Nature; 2005 Feb; 433(7025):503-5. PubMed ID: 15690036 [TBL] [Abstract][Full Text] [Related]
13. Electronic to vibrational energy transfer assisted by interacting transition dipole moments: a quantum model for the nonadiabatic I2(E) + CF4 collisions. Suleimanov YV; Buchachenko AA J Phys Chem A; 2007 Sep; 111(37):8959-67. PubMed ID: 17725333 [TBL] [Abstract][Full Text] [Related]
14. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface. Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561 [TBL] [Abstract][Full Text] [Related]
15. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering. Kelley AM J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038 [TBL] [Abstract][Full Text] [Related]
16. The surface temperature dependence of the inelastic scattering and dissociation of hydrogen molecules from metal surfaces. Wang ZS; Darling GR; Holloway S J Chem Phys; 2004 Feb; 120(6):2923-33. PubMed ID: 15268440 [TBL] [Abstract][Full Text] [Related]
17. Theoretical evidence for nonadiabatic vibrational deexcitation in H2(D2) state-to-state scattering from Cu(100). Luntz AC; Persson M; Sitz GO J Chem Phys; 2006 Mar; 124(9):91101. PubMed ID: 16526837 [TBL] [Abstract][Full Text] [Related]
18. Quantifying the breakdown of the Born-Oppenheimer approximation in surface chemistry. Rahinov I; Cooper R; Matsiev D; Bartels C; Auerbach DJ; Wodtke AM Phys Chem Chem Phys; 2011 Jul; 13(28):12680-92. PubMed ID: 21677973 [TBL] [Abstract][Full Text] [Related]
19. A new ab initio potential energy surface for studying vibrational relaxation in NO(v) + NO collisions. Pajón-Suárez P; Rubayo-Soneira J; Hernández-Lamoneda R J Phys Chem A; 2011 Apr; 115(13):2892-9. PubMed ID: 21410176 [TBL] [Abstract][Full Text] [Related]
20. Model Hamiltonian for the interaction of NO with the Au(111) surface. Roy S; Shenvi NA; Tully JC J Chem Phys; 2009 May; 130(17):174716. PubMed ID: 19425807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]