These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19892978)

  • 1. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111).
    Díaz C; Pijper E; Olsen RA; Busnengo HF; Auerbach DJ; Kroes GJ
    Science; 2009 Nov; 326(5954):832-4. PubMed ID: 19892978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six-dimensional dynamics study of reactive and non reactive scattering of H(2) from Cu(111) using a chemically accurate potential energy surface.
    Díaz C; Olsen RA; Auerbach DJ; Kroes GJ
    Phys Chem Chem Phys; 2010 Jun; 12(24):6499-519. PubMed ID: 20473432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces.
    Kroes GJ; Díaz C
    Chem Soc Rev; 2016 Jun; 45(13):3658-700. PubMed ID: 26235525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a specific reaction parameter density functional for reactive scattering of H2 from Pd(111).
    Boereboom JM; Wijzenbroek M; Somers MF; Kroes GJ
    J Chem Phys; 2013 Dec; 139(24):244707. PubMed ID: 24387388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive scattering of H2 from Cu(100): six-dimensional quantum dynamics results for reaction and scattering obtained with a new, accurately fitted potential-energy surface.
    Somers MF; Olsen RA; Busnengo HF; Baerends EJ; Kroes GJ
    J Chem Phys; 2004 Dec; 121(22):11379-87. PubMed ID: 15634096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment.
    Sementa L; Wijzenbroek M; van Kolck BJ; Somers MF; Al-Halabi A; Busnengo HF; Olsen RA; Kroes GJ; Rutkowski M; Thewes C; Kleimeier NF; Zacharias H
    J Chem Phys; 2013 Jan; 138(4):044708. PubMed ID: 23387616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociative chemisorption of H2 on the Cu(110) surface: a quantum and quasiclassical dynamical study.
    Kroes GJ; Pijper E; Salin A
    J Chem Phys; 2007 Oct; 127(16):164722. PubMed ID: 17979386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of hydrogen dissociative adsorption on strained pseudomorphic monolayers of Cu and Pd deposited onto a Ru(0001) substrate.
    Laurent G; Martín F; Busnengo HF
    Phys Chem Chem Phys; 2009 Sep; 11(33):7303-11. PubMed ID: 19672542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the exchange-correlation functional on H2 dissociation on Ru(0001).
    Wijzenbroek M; Kroes GJ
    J Chem Phys; 2014 Feb; 140(8):084702. PubMed ID: 24588186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards chemically accurate simulation of molecule-surface reactions.
    Kroes GJ
    Phys Chem Chem Phys; 2012 Nov; 14(43):14966-81. PubMed ID: 23037951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111).
    Crespos C; Collins MA; Pijper E; Kroes GJ
    J Chem Phys; 2004 Feb; 120(5):2392-404. PubMed ID: 15268379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and scattering of H2 and D2 by NiAl(110).
    Rivière P; Busnengo HF; Martín F
    J Chem Phys; 2005 Aug; 123(7):074705. PubMed ID: 16229608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory study of H and H2 interacting with NiAl(110).
    Riviere P; Busnengo HF; Martin F
    J Chem Phys; 2004 Jul; 121(2):751-60. PubMed ID: 15260601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of molecular rotation in activated dissociative adsorption on metal surfaces.
    Rivière P; Salin A; Martín F
    J Chem Phys; 2006 Feb; 124(8):084706. PubMed ID: 16512735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction.
    Nattino F; Migliorini D; Kroes GJ; Dombrowski E; High EA; Killelea DR; Utz AL
    J Phys Chem Lett; 2016 Jul; 7(13):2402-6. PubMed ID: 27284787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test of the Transferability of the Specific Reaction Parameter Functional for H
    Nour Ghassemi E; Somers M; Kroes GJ
    J Phys Chem C Nanomater Interfaces; 2018 Oct; 122(40):22939-22952. PubMed ID: 30344838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Six-dimensional potential energy surface for H2 at Ru(0001).
    Luppi M; Olsen RA; Baerends EJ
    Phys Chem Chem Phys; 2006 Feb; 8(6):688-96. PubMed ID: 16482308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The surface temperature dependence of the inelastic scattering and dissociation of hydrogen molecules from metal surfaces.
    Wang ZS; Darling GR; Holloway S
    J Chem Phys; 2004 Feb; 120(6):2923-33. PubMed ID: 15268440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.