These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 19893511)
1. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Choi Y; Park Y; Kang T; Lee LP Nat Nanotechnol; 2009 Nov; 4(11):742-6. PubMed ID: 19893511 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic resonance energy transfer-based nanospectroscopy for sensitive and selective detection of 2,4,6-trinitrotoluene (TNT). Qu WG; Deng B; Zhong SL; Shi HY; Wang SS; Xu AW Chem Commun (Camb); 2011 Jan; 47(4):1237-9. PubMed ID: 21103525 [TBL] [Abstract][Full Text] [Related]
3. Tunable Plasmonic Cavity for Label-free Detection of Small Molecules. Kwon JA; Jin CM; Shin Y; Kim HY; Kim Y; Kang T; Choi I ACS Appl Mater Interfaces; 2018 Apr; 10(15):13226-13235. PubMed ID: 29569438 [TBL] [Abstract][Full Text] [Related]
4. General Sensitive Detecting Strategy of Ions through Plasmonic Resonance Energy Transfer from Gold Nanoparticles to Rhodamine Spirolactam. Gao MX; Zou HY; Li YF; Huang CZ Anal Chem; 2017 Feb; 89(3):1808-1814. PubMed ID: 28208282 [TBL] [Abstract][Full Text] [Related]
5. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Choi Y; Kang T; Lee LP Nano Lett; 2009 Jan; 9(1):85-90. PubMed ID: 19093833 [TBL] [Abstract][Full Text] [Related]
6. Enzyme Activity Triggered Blocking of Plasmon Resonance Energy Transfer for Highly Selective Detection of Acid Phosphatase. Yan X; Xia C; Chen B; Li YF; Gao PF; Huang CZ Anal Chem; 2020 Jan; 92(2):2130-2135. PubMed ID: 31850751 [TBL] [Abstract][Full Text] [Related]
7. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer. Shi L; Jing C; Gu Z; Long YT Sci Rep; 2015 May; 5():10142. PubMed ID: 25959016 [TBL] [Abstract][Full Text] [Related]
8. Detecting plasmon resonance energy transfer with differential interference contrast microscopy. Augspurger AE; Stender AS; Han R; Fang N Anal Chem; 2014 Jan; 86(2):1196-201. PubMed ID: 24377308 [TBL] [Abstract][Full Text] [Related]
9. Metasurfaces-Driven Hyperspectral Imaging via Multiplexed Plasmonic Resonance Energy Transfer. Kim I; Kim H; Han S; Kim J; Kim Y; Eom S; Barulin A; Choi I; Rho J; Lee LP Adv Mater; 2023 Aug; 35(32):e2300229. PubMed ID: 37093776 [TBL] [Abstract][Full Text] [Related]
10. A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(II) detection. Jing C; Shi L; Liu X; Long YT Analyst; 2014 Dec; 139(24):6435-9. PubMed ID: 25338009 [TBL] [Abstract][Full Text] [Related]
11. Plasmon-Resonance-Energy-Transfer-Based Spectroscopy on Single Nanoparticles: Biomolecular Recognition and Enzyme Kinetics. Li SS; Kong QY; Zhang M; Yang F; Kang B; Xu JJ; Chen HY Anal Chem; 2018 Mar; 90(6):3833-3841. PubMed ID: 29489333 [TBL] [Abstract][Full Text] [Related]
12. AIE active multianalyte fluorescent probe for the detection of Cu Pannipara M; Al-Sehemi AG; Irfan A; Assiri M; Kalam A; Al-Ammari YS Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():54-60. PubMed ID: 29730554 [TBL] [Abstract][Full Text] [Related]
13. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Liu GL; Long YT; Choi Y; Kang T; Lee LP Nat Methods; 2007 Dec; 4(12):1015-7. PubMed ID: 18026109 [TBL] [Abstract][Full Text] [Related]
14. Picomolar selective detection of mercuric ion (Hg(2+)) using a functionalized single plasmonic gold nanoparticle. Song HD; Choi I; Yang YI; Hong S; Lee S; Kang T; Yi J Nanotechnology; 2010 Apr; 21(14):145501. PubMed ID: 20215658 [TBL] [Abstract][Full Text] [Related]
15. PAA Modified Upconversion Nanoparticles for Highly Selective and Sensitive Detection of Cu Su S; Mo Z; Tan G; Wen H; Chen X; Hakeem DA Front Chem; 2020; 8():619764. PubMed ID: 33490041 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances in Nanoplasmonic Sensors for Environmental Detection and Monitoring. Choi I J Nanosci Nanotechnol; 2016 May; 16(5):4274-83. PubMed ID: 27483747 [TBL] [Abstract][Full Text] [Related]
18. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Lin YW; Huang CC; Chang HT Analyst; 2011 Mar; 136(5):863-71. PubMed ID: 21157604 [TBL] [Abstract][Full Text] [Related]
19. Multiplex plasmonic sensor for detection of different metal ions based on a single type of gold nanorod. Huang H; Chen S; Liu F; Zhao Q; Liao B; Yi S; Zeng Y Anal Chem; 2013 Feb; 85(4):2312-9. PubMed ID: 23331246 [TBL] [Abstract][Full Text] [Related]
20. Distance-Dependence Study of Plasmon Resonance Energy Transfer with DNA Spacers. Ma J; Gao MX; Zuo H; Li YF; Gao PF; Huang CZ Anal Chem; 2020 Oct; 92(20):14278-14283. PubMed ID: 33027589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]