These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19893522)

  • 21. Near infrared broadband emission of In0.35Ga0.65As quantum dots on high index GaAs surfaces.
    Wu J; Wang ZM; Dorogan VG; Li S; Mazur YI; Salamo GJ
    Nanoscale; 2011 Apr; 3(4):1485-8. PubMed ID: 21384043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Type-II GaSb quantum dots grown on InAlAs/InP (001) by droplet epitaxy.
    Yuan Q; Liang B; Luo S; Wang Y; Yan Q; Wang S; Fu G; Mazur YI; Maidaniuk Y; Ware ME; Salamo GJ
    Nanotechnology; 2020 Jul; 31(31):315701. PubMed ID: 32303015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction and Cooperative Nucleation of InAsSbP Quantum Dots and Pits on InAs(100) Substrate.
    Gambaryan KM
    Nanoscale Res Lett; 2009 Dec; 5(3):587-91. PubMed ID: 20672042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy.
    Somaschini C; Bietti S; Fedorov A; Koguchi N; Sanguinetti S
    Nanoscale Res Lett; 2010 Aug; 5(12):1897-900. PubMed ID: 21170414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origin of nanohole formation by etching based on droplet epitaxy.
    Li X; Wu J; Wang ZM; Liang B; Lee J; Kim ES; Salamo GJ
    Nanoscale; 2014 Mar; 6(5):2675-81. PubMed ID: 24445506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical characteristics of type-II hexagonal-shaped GaSb quantum dots on GaAs synthesized using nanowire self-growth mechanism from Ga metal droplet.
    Baik M; Kyhm JH; Kang HK; Jeong KS; Kim JS; Cho MH; Song JD
    Sci Rep; 2021 Apr; 11(1):7699. PubMed ID: 33833327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Investigation of Intermediate Stage of Template Etching with Metal Droplets by Wetting Angle Analysis on (001) GaAs Surface.
    Lyamkina AA; Dmitriev DV; Galitsyn YG; Kesler VG; Moshchenko SP; Toropov AI
    Nanoscale Res Lett; 2011 Dec; 6(1):42. PubMed ID: 27502664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can misfit dislocations be located above the interface of InAs/GaAs (001) epitaxial quantum dots?
    Chen ZB; Lei W; Chen B; Wang YB; Liao XZ; Tan HH; Zou J; Ringer SP; Jagadish C
    Nanoscale Res Lett; 2012 Aug; 7(1):486. PubMed ID: 22935541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices.
    Gurioli M; Wang Z; Rastelli A; Kuroda T; Sanguinetti S
    Nat Mater; 2019 Aug; 18(8):799-810. PubMed ID: 31086322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupled quantum dot-ring structures by droplet epitaxy.
    Somaschini C; Bietti S; Koguchi N; Sanguinetti S
    Nanotechnology; 2011 May; 22(18):185602. PubMed ID: 21415467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.
    Basso Basset F; Bietti S; Reindl M; Esposito L; Fedorov A; Huber D; Rastelli A; Bonera E; Trotta R; Sanguinetti S
    Nano Lett; 2018 Jan; 18(1):505-512. PubMed ID: 29239186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. O-Band Emitting InAs Quantum Dots Grown By MOCVD On A 300 mm Ge-Buffered Si (001) Substrate.
    Abouzaid O; Mehdi H; Martin M; Moeyaert J; Salem B; David S; Souifi A; Chauvin N; Hartmann JM; Ilahi B; Morris D; Ahaitouf A; Ahaitouf A; Baron T
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33297597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy.
    Balakirev SV; Solodovnik MS; Eremenko MM; Konoplev BG; Ageev OA
    Nanotechnology; 2019 Dec; 30(50):505601. PubMed ID: 31480037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface x-ray diffraction results on the III-V droplet heteroepitaxy growth process for quantum dots: recent understanding and open questions.
    Cohen E; Elfassy N; Koplovitz G; Yochelis S; Shusterman S; Kumah DP; Yacoby Y; Clarke R; Paltiel Y
    Sensors (Basel); 2011; 11(11):10624-37. PubMed ID: 22346663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and Effect of Thermal Annealing on InAs Quantum Dots Grown by Droplet Epitaxy on GaAs(111)A Substrates.
    Bietti S; Esposito L; Fedorov A; Ballabio A; Martinelli A; Sanguinetti S
    Nanoscale Res Lett; 2015 Dec; 10(1):930. PubMed ID: 26058506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate.
    Azeza B; Hadj Alouane MH; Ilahi B; Patriarche G; Sfaxi L; Fouzri A; Maaref H; M'ghaieth R
    Materials (Basel); 2015 Jul; 8(7):4544-4552. PubMed ID: 28793455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of Core-Shell Quantum Dots-3D WS
    Tang SY; Yang CC; Su TY; Yang TY; Wu SC; Hsu YC; Chen YZ; Lin TN; Shen JL; Lin HN; Chiu PW; Kuo HC; Chueh YL
    ACS Nano; 2020 Oct; 14(10):12668-12678. PubMed ID: 32813498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulating the Optoelectronic Properties of Quasi-type II CuInS
    Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wafer-scale epitaxial modulation of quantum dot density.
    Bart N; Dangel C; Zajac P; Spitzer N; Ritzmann J; Schmidt M; Babin HG; Schott R; Valentin SR; Scholz S; Wang Y; Uppu R; Najer D; Löbl MC; Tomm N; Javadi A; Antoniadis NO; Midolo L; Müller K; Warburton RJ; Lodahl P; Wieck AD; Finley JJ; Ludwig A
    Nat Commun; 2022 Mar; 13(1):1633. PubMed ID: 35347120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epitaxial growth and defect repair of heterostructured CuInSe
    Wang C; Barba D; Zhao H; Tong X; Wang Z; Rosei F
    Nanoscale; 2019 Nov; 11(41):19529-19535. PubMed ID: 31573586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.