These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19893739)

  • 1. Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury.
    Kumagai G; Okada Y; Yamane J; Nagoshi N; Kitamura K; Mukaino M; Tsuji O; Fujiyoshi K; Katoh H; Okada S; Shibata S; Matsuzaki Y; Toh S; Toyama Y; Nakamura M; Okano H
    PLoS One; 2009 Nov; 4(11):e7706. PubMed ID: 19893739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.
    Yasuda A; Tsuji O; Shibata S; Nori S; Takano M; Kobayashi Y; Takahashi Y; Fujiyoshi K; Hara CM; Miyawaki A; Okano HJ; Toyama Y; Nakamura M; Okano H
    Stem Cells; 2011 Dec; 29(12):1983-94. PubMed ID: 22028197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury.
    Kamata Y; Isoda M; Sanosaka T; Shibata R; Ito S; Okubo T; Shinozaki M; Inoue M; Koya I; Shibata S; Shindo T; Matsumoto M; Nakamura M; Okano H; Nagoshi N; Kohyama J
    Stem Cells Transl Med; 2021 Mar; 10(3):398-413. PubMed ID: 33226180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of neural stem/progenitor cells at different locations in mice with spinal cord injury.
    Iwai H; Nori S; Nishimura S; Yasuda A; Takano M; Tsuji O; Fujiyoshi K; Toyama Y; Okano H; Nakamura M
    Cell Transplant; 2014; 23(11):1451-64. PubMed ID: 23998989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y; Okada Y; Itakura G; Iwai H; Nishimura S; Yasuda A; Nori S; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Yamanaka S; Nakamura M; Okano H
    PLoS One; 2012; 7(12):e52787. PubMed ID: 23300777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets.
    Yamane J; Nakamura M; Iwanami A; Sakaguchi M; Katoh H; Yamada M; Momoshima S; Miyao S; Ishii K; Tamaoki N; Nomura T; Okano HJ; Kanemura Y; Toyama Y; Okano H
    J Neurosci Res; 2010 May; 88(7):1394-405. PubMed ID: 20091712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury.
    Tsuji O; Miura K; Okada Y; Fujiyoshi K; Mukaino M; Nagoshi N; Kitamura K; Kumagai G; Nishino M; Tomisato S; Higashi H; Nagai T; Katoh H; Kohda K; Matsuzaki Y; Yuzaki M; Ikeda E; Toyama Y; Nakamura M; Yamanaka S; Okano H
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12704-9. PubMed ID: 20615974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates.
    Iwai H; Shimada H; Nishimura S; Kobayashi Y; Itakura G; Hori K; Hikishima K; Ebise H; Negishi N; Shibata S; Habu S; Toyama Y; Nakamura M; Okano H
    Stem Cells Transl Med; 2015 Jul; 4(7):708-19. PubMed ID: 26019226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury.
    Nishimura S; Yasuda A; Iwai H; Takano M; Kobayashi Y; Nori S; Tsuji O; Fujiyoshi K; Ebise H; Toyama Y; Okano H; Nakamura M
    Mol Brain; 2013 Jan; 6():3. PubMed ID: 23298657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.
    Salazar DL; Uchida N; Hamers FP; Cummings BJ; Anderson AJ
    PLoS One; 2010 Aug; 5(8):e12272. PubMed ID: 20806064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells.
    Okada Y; Matsumoto A; Shimazaki T; Enoki R; Koizumi A; Ishii S; Itoyama Y; Sobue G; Okano H
    Stem Cells; 2008 Dec; 26(12):3086-98. PubMed ID: 18757299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function.
    Kawai M; Imaizumi K; Ishikawa M; Shibata S; Shinozaki M; Shibata T; Hashimoto S; Kitagawa T; Ago K; Kajikawa K; Shibata R; Kamata Y; Ushiba J; Koga K; Furue H; Matsumoto M; Nakamura M; Nagoshi N; Okano H
    Cell Rep; 2021 Nov; 37(8):110019. PubMed ID: 34818559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury.
    Kawabata S; Takano M; Numasawa-Kuroiwa Y; Itakura G; Kobayashi Y; Nishiyama Y; Sugai K; Nishimura S; Iwai H; Isoda M; Shibata S; Kohyama J; Iwanami A; Toyama Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2016 Jan; 6(1):1-8. PubMed ID: 26724902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rehabilitative Training Enhances Therapeutic Effect of Human-iPSC-Derived Neural Stem/Progenitor Cells Transplantation in Chronic Spinal Cord Injury.
    Shibata T; Tashiro S; Shibata S; Shinozaki M; Shindo T; Hashimoto S; Kawai M; Kitagawa T; Ago K; Matsumoto M; Nakamura M; Okano H; Nagoshi N
    Stem Cells Transl Med; 2023 Mar; 12(2):83-96. PubMed ID: 36647673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarized Macrophages Have Distinct Roles in the Differentiation and Migration of Embryonic Spinal-cord-derived Neural Stem Cells After Grafting to Injured Sites of Spinal Cord.
    Zhang K; Zheng J; Bian G; Liu L; Xue Q; Liu F; Yu C; Zhang H; Song B; Chung SK; Ju G; Wang J
    Mol Ther; 2015 Jun; 23(6):1077-1091. PubMed ID: 25794051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury.
    Ito S; Nagoshi N; Kamata Y; Kojima K; Nori S; Matsumoto M; Takei K; Nakamura M; Okano H
    Stem Cell Reports; 2021 Nov; 16(11):2703-2717. PubMed ID: 34653401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.
    All AH; Bazley FA; Gupta S; Pashai N; Hu C; Pourmorteza A; Kerr C
    PLoS One; 2012; 7(10):e47645. PubMed ID: 23091637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI.
    Johnson PJ; Tatara A; Shiu A; Sakiyama-Elbert SE
    Cell Transplant; 2010; 19(1):89-101. PubMed ID: 19818206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem cell-based cell therapy for spinal cord injury.
    Kim BG; Hwang DH; Lee SI; Kim EJ; Kim SU
    Cell Transplant; 2007; 16(4):355-64. PubMed ID: 17658126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.