BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19893765)

  • 1. Engineered G-protein Coupled Receptors are Powerful Tools to Investigate Biological Processes and Behaviors.
    Nichols CD; Roth BL
    Front Mol Neurosci; 2009; 2():16. PubMed ID: 19893765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of chemogenetic approaches to study the physiological roles of muscarinic acetylcholine receptors in the central nervous system.
    Bradley SJ; Tobin AB; Prihandoko R
    Neuropharmacology; 2018 Jul; 136(Pt C):421-426. PubMed ID: 29191752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemogenetic Signaling in Space and Time: Considerations for Designing Neuroscience Experiments Using DREADDs.
    Clark PJ; Brodnik ZD; España RA
    Neuroscientist; 2024 Jun; 30(3):328-346. PubMed ID: 36408535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action.
    Ozawa A; Arakawa H
    Behav Brain Res; 2021 May; 406():113234. PubMed ID: 33741409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic G protein-coupled receptors for programmable sensing and control of cell behavior.
    Kalogriopoulos NA; Tei R; Yan Y; Ravalin M; Li Y; Ting A
    bioRxiv; 2024 Apr; ():. PubMed ID: 38659921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility.
    Urban DJ; Roth BL
    Annu Rev Pharmacol Toxicol; 2015; 55():399-417. PubMed ID: 25292433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel designer receptors to probe GPCR signaling and physiology.
    Wess J; Nakajima K; Jain S
    Trends Pharmacol Sci; 2013 Jul; 34(7):385-92. PubMed ID: 23769625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs.
    Dong S; Rogan SC; Roth BL
    Nat Protoc; 2010 Mar; 5(3):561-73. PubMed ID: 20203671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DREADDs for Neuroscientists.
    Roth BL
    Neuron; 2016 Feb; 89(4):683-94. PubMed ID: 26889809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DREADDs: novel tools for drug discovery and development.
    Lee HM; Giguere PM; Roth BL
    Drug Discov Today; 2014 Apr; 19(4):469-73. PubMed ID: 24184433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of designer receptors exclusively activated by designer drugs (DREADDs) using directed molecular evolution.
    Pei Y; Dong S; Roth BL
    Curr Protoc Neurosci; 2010 Jan; Chapter 4():Unit 4.33. PubMed ID: 20066658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative Medicine for Spinal Cord Injury Using Induced Pluripotent Stem Cells.
    Nagoshi N; Sugai K; Okano H; Nakamura M
    Spine Surg Relat Res; 2024 Jan; 8(1):22-28. PubMed ID: 38343414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the GABAergic cells of the median raphe region in reinforcement-based learning.
    Chaves T; Török B; Fazekas C; Correia P; Karailiev P; Oravcova H; Sipos E; Biró L; Haller J; Jezova D; Zelena D
    Sci Rep; 2024 Jan; 14(1):1175. PubMed ID: 38216718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current status and prospects of regenerative medicine for spinal cord injury using human induced pluripotent stem cells: a review.
    Inoue M; Yamaguchi R; He CCJ; Ikeda A; Okano H; Kohyama J
    Stem Cell Investig; 2023; 10():6. PubMed ID: 36970397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Narrative Review of Advances in Neural Precursor Cell Transplantation Therapies for Spinal Cord Injury.
    Kitagawa T; Nagoshi N; Okano H; Nakamura M
    Neurospine; 2022 Dec; 19(4):935-945. PubMed ID: 36597632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of regenerative therapy for spinal cord injury using human iPS cells.
    Kawai M; Nagoshi N; Okano H; Nakamura M
    N Am Spine Soc J; 2023 Mar; 13():100184. PubMed ID: 36479183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and fate of an engram in the lateral amygdala supporting a rewarding memory in mice.
    Park A; Jacob AD; Hsiang HL; Frankland PW; Howland JG; Josselyn SA
    Neuropsychopharmacology; 2023 Apr; 48(5):724-733. PubMed ID: 36261624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-invasive system to monitor in vivo neural graft activity after spinal cord injury.
    Ago K; Nagoshi N; Imaizumi K; Kitagawa T; Kawai M; Kajikawa K; Shibata R; Kamata Y; Kojima K; Shinozaki M; Kondo T; Iwano S; Miyawaki A; Ohtsuka M; Bito H; Kobayashi K; Shibata S; Shindo T; Kohyama J; Matsumoto M; Nakamura M; Okano H
    Commun Biol; 2022 Aug; 5(1):803. PubMed ID: 35948599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation by DREADD reveals the therapeutic effect of human iPSC-derived neuronal activity on functional recovery after spinal cord injury.
    Kitagawa T; Nagoshi N; Kamata Y; Kawai M; Ago K; Kajikawa K; Shibata R; Sato Y; Imaizumi K; Shindo T; Shinozaki M; Kohyama J; Shibata S; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2022 Jan; 17(1):127-142. PubMed ID: 35021049
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.