BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19894005)

  • 21. Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study.
    Frotzler A; Coupaud S; Perret C; Kakebeeke TH; Hunt KJ; Eser P
    J Rehabil Med; 2009 Mar; 41(4):282-5. PubMed ID: 19247550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle strength is significantly associated with hip bone mineral density in women with Parkinson's disease: a cross-sectional study.
    Pang MY; Mak MK
    J Rehabil Med; 2009 Mar; 41(4):223-30. PubMed ID: 19247540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociated hip and spine demineralization: a specific finding in spinal cord injury.
    Leslie WD; Nance PW
    Arch Phys Med Rehabil; 1993 Sep; 74(9):960-4. PubMed ID: 8379843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of mandibular bone mineral density in osteoporotic, osteopenic and normal elderly edentulous subjects measured by the dual-energy X-ray absorptiometry technique.
    Buyukkaplan US; Guldag MU; Yildiz M; Gumus BA
    Gerodontology; 2012 Jun; 29(2):e1098-102. PubMed ID: 22288568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in body composition as determinants of longitudinal changes in bone mineral measures in 8 to 26-year-old female twins.
    Young D; Hopper JL; Macinnis RJ; Nowson CA; Hoang NH; Wark JD
    Osteoporos Int; 2001; 12(6):506-15. PubMed ID: 11446568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury.
    Modlesky CM; Majumdar S; Narasimhan A; Dudley GA
    J Bone Miner Res; 2004 Jan; 19(1):48-55. PubMed ID: 14753736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between self- and clinically rated spasticity in spinal cord injury.
    Lechner HE; Frotzler A; Eser P
    Arch Phys Med Rehabil; 2006 Jan; 87(1):15-9. PubMed ID: 16401432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Body composition after stroke.
    Celik B; Ones K; Ince N
    Int J Rehabil Res; 2008 Mar; 31(1):93-6. PubMed ID: 18277212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury.
    Karelis AD; Carvalho LP; Castillo MJ; Gagnon DH; Aubertin-Leheudre M
    J Rehabil Med; 2017 Jan; 49(1):84-87. PubMed ID: 27973679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury.
    Lai CH; Chang WH; Chan WP; Peng CW; Shen LK; Chen JJ; Chen SC
    J Rehabil Med; 2010 Feb; 42(2):150-4. PubMed ID: 20140411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of a dual-scales method to measure weight-bearing through the legs, and effects of weight-bearing inequalities on hip bone mineral density and leg lean tissue mass.
    Hopkins S; Smith C; Toms A; Brown M; Welsman J; Knapp K
    J Rehabil Med; 2013 Feb; 45(2):206-10. PubMed ID: 23250617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spasticity and preservation of skeletal muscle mass in people with spinal cord injury.
    Cha S; Yun JH; Myong Y; Shin HI
    Spinal Cord; 2019 Apr; 57(4):317-323. PubMed ID: 30552414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of bone mineral density in patients with spinal cord injury.
    Kaya K; Aybay C; Ozel S; Kutay N; Gokkaya O
    J Spinal Cord Med; 2006; 29(4):396-401. PubMed ID: 17044390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoporosis in the lower extremities in chronic spinal cord injury.
    Frotzler A; Krebs J; Göhring A; Hartmann K; Tesini S; Lippuner K
    Spinal Cord; 2020 Apr; 58(4):441-448. PubMed ID: 31732714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury.
    Kiratli BJ; Smith AE; Nauenberg T; Kallfelz CF; Perkash I
    J Rehabil Res Dev; 2000; 37(2):225-33. PubMed ID: 10850829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Barriers to providing dual energy x-ray absorptiometry services to individuals with spinal cord injury.
    Morse LR; Geller A; Battaglino RA; Stolzmann KL; Matthess K; Lazzari AA; Garshick E
    Am J Phys Med Rehabil; 2009 Jan; 88(1):57-60. PubMed ID: 18824888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Denervation impacts muscle quality and knee bone mineral density after spinal cord injury.
    Alazzam AM; Goldsmith JA; Khalil RE; Khan MR; Gorgey AS
    Spinal Cord; 2023 Apr; 61(4):276-284. PubMed ID: 36899099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of anthropometric, systemic, and lifestyle factors influencing bone status in the legs of spinal cord injured individuals.
    Eser P; Frotzler A; Zehnder Y; Schiessl H; Denoth J
    Osteoporos Int; 2005 Jan; 16(1):26-34. PubMed ID: 15138665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Static standing, dynamic standing and spasticity in individuals with spinal cord injury.
    Sadeghi M; Mclvor J; Finlayson H; Sawatzky B
    Spinal Cord; 2016 May; 54(5):376-82. PubMed ID: 26391189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric lower-limb bone loss after spinal cord injury: case report.
    Lichy AM; Groah S
    J Rehabil Res Dev; 2012; 49(2):221-6. PubMed ID: 22773524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.