These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 19894276)
1. Entrapment of multiple anti-Tb drugs in microemulsion system: quantitative analysis, stability, and in vitro release studies. Mehta SK; Kaur G; Bhasin KK J Pharm Sci; 2010 Apr; 99(4):1896-911. PubMed ID: 19894276 [TBL] [Abstract][Full Text] [Related]
2. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization. Kaur G; Mehta SK; Kumar S; Bhanjana G; Dilbaghi N J Pharm Sci; 2015 Jul; 104(7):2203-12. PubMed ID: 25951802 [TBL] [Abstract][Full Text] [Related]
3. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs. Mehta SK; Kaur G; Bhasin KK AAPS PharmSciTech; 2010 Mar; 11(1):143-53. PubMed ID: 20087697 [TBL] [Abstract][Full Text] [Related]
4. Incorporation of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: effect on microstructure and physical parameters. Mehta SK; Kaur G; Bhasin KK Pharm Res; 2008 Jan; 25(1):227-36. PubMed ID: 17577642 [TBL] [Abstract][Full Text] [Related]
5. Probing location of anti-TB drugs loaded in Brij 96 microemulsions using thermoanalytical and photophysical approach. Kaur G; Mehta SK J Pharm Sci; 2014 Mar; 103(3):937-44. PubMed ID: 24425102 [TBL] [Abstract][Full Text] [Related]
6. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Mehta SK; Jindal N Colloids Surf B Biointerfaces; 2013 Jan; 101():434-41. PubMed ID: 23010052 [TBL] [Abstract][Full Text] [Related]
7. Location of anti-TB drugs and microstructural changes in organized surfactant media using optical properties. Mehta SK; Kaur G J Colloid Interface Sci; 2011 Apr; 356(2):589-97. PubMed ID: 21292277 [TBL] [Abstract][Full Text] [Related]
8. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal. Battini S; Mannava MKC; Nangia A J Pharm Sci; 2018 Jun; 107(6):1667-1679. PubMed ID: 29462633 [TBL] [Abstract][Full Text] [Related]
9. Artificial neural networks to optimize formulation components of a fixed-dose combination of rifampicin, isoniazid and pyrazinamide in a microemulsion. Glass BD; Agatonovic-Kustrin S; Wisch MH Curr Drug Discov Technol; 2005 Sep; 2(3):195-201. PubMed ID: 16472228 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic explanation to the catalysis by pyrazinamide and ethambutol of reaction between rifampicin and isoniazid in anti-TB FDCs. Bhutani H; Singh S; Jindal KC; Chakraborti AK J Pharm Biomed Anal; 2005 Oct; 39(5):892-9. PubMed ID: 15978767 [TBL] [Abstract][Full Text] [Related]
11. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH. Singh H; Bhandari R; Kaur IP Int J Pharm; 2013 Mar; 446(1-2):106-11. PubMed ID: 23410991 [TBL] [Abstract][Full Text] [Related]
12. Compatibility Between Four Anti-TB Drugs and Tablet Excipients Determined By Microcalorimetry. Aucamp M; Liebenberg W; Okaecwe T; Geldenhuys M; Stieger N Pharmazie; 2019 Jun; 74(6):350-351. PubMed ID: 31138372 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Tween based microemulsion in the presence of TB drug rifampicin. Mehta SK; Kaur G; Bhasin KK Colloids Surf B Biointerfaces; 2007 Oct; 60(1):95-104. PubMed ID: 17646089 [TBL] [Abstract][Full Text] [Related]
14. Pharmaceutical formulation of a fixed-dose anti-tuberculosis combination. Danckwerts MP; Ebrahim S; Pillay V Int J Tuberc Lung Dis; 2003 Mar; 7(3):289-97. PubMed ID: 12661846 [TBL] [Abstract][Full Text] [Related]
15. Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons. Liu L; Xu Y; Shea C; Fowler JS; Hooker JM; Tonge PJ J Med Chem; 2010 Apr; 53(7):2882-91. PubMed ID: 20205479 [TBL] [Abstract][Full Text] [Related]
16. Ascorbic acid improves stability and pharmacokinetics of rifampicin in the presence of isoniazid. Rajaram S; Vemuri VD; Natham R J Pharm Biomed Anal; 2014 Nov; 100():103-108. PubMed ID: 25151231 [TBL] [Abstract][Full Text] [Related]
17. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration. de Oliveira Neves AC; Soares GM; de Morais SC; da Costa FS; Porto DL; de Lima KM J Pharm Biomed Anal; 2012 Jan; 57():115-9. PubMed ID: 21908131 [TBL] [Abstract][Full Text] [Related]
18. Formulation and statistical optimization of a novel crosslinked polymeric anti-tuberculosis drug delivery system. du Toit LC; Pillay V; Danckwerts MP; Penny C J Pharm Sci; 2008 Jun; 97(6):2176-207. PubMed ID: 17879985 [TBL] [Abstract][Full Text] [Related]
19. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Tostmann A; Boeree MJ; Peters WH; Roelofs HM; Aarnoutse RE; van der Ven AJ; Dekhuijzen PN Int J Antimicrob Agents; 2008 Jun; 31(6):577-80. PubMed ID: 18358703 [TBL] [Abstract][Full Text] [Related]
20. Stability of isoniazid, rifampin and pyrazinamide in suspensions used for the treatment of tuberculosis in children. Seifart HI; Parkin DP; Donald PR Pediatr Infect Dis J; 1991 Nov; 10(11):827-31. PubMed ID: 1749695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]