These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 19894635)

  • 21. A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons.
    Bahmer A; Langner G
    Biol Cybern; 2009 Jan; 100(1):21-33. PubMed ID: 19015873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Adaptation of differential sensitivity of auditory neurons to amplitude modulation after a sharp change of signal intensity].
    Bibikov NG
    Zh Evol Biokhim Fiziol; 2013; 49(1):44-54. PubMed ID: 23662481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Reproduction of the shape of an acoustic wave in the overall synchronized response of the cochlear nuclei].
    Nikitin NI
    Fiziol Zh SSSR Im I M Sechenova; 1981 Aug; 67(8):1208-14. PubMed ID: 7286337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural delay in the ascending auditory pathway.
    Møller AR
    Exp Brain Res; 1981; 43(1):93-100. PubMed ID: 6265262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1389-98. PubMed ID: 17694859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin of latency shift of cochlear nerve potentials with sound intensity.
    Møller AR
    Hear Res; 1985 Feb; 17(2):177-89. PubMed ID: 4008354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Process of adaptation in frog auditory system neurons].
    Bibikov NG
    Biofizika; 2004; 49(1):107-20. PubMed ID: 15029726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [About the problem of bursting in spontaneous neuronal activity at the periphery of the frog auditory pathway].
    Bibikov NG
    Zh Evol Biokhim Fiziol; 2013; 49(6):417-27. PubMed ID: 25490847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The time course of recovery from suppression and facilitation from single units in the mammalian cochlear nucleus.
    Bleeck S; Sayles M; Ingham NJ; Winter IM
    Hear Res; 2006 Feb; 212(1-2):176-84. PubMed ID: 16458460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of bandwidths in the inferior colliculus and the auditory nerve. II: Measurement using a temporally manipulated stimulus.
    Mc Laughlin M; Chabwine JN; van der Heijden M; Joris PX
    J Neurophysiol; 2008 Oct; 100(4):2312-27. PubMed ID: 18701761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical responses to amplitude modulation in guinea pigs and the effects of general anesthesia by pentobarbital.
    Feng Y; Yin S; Wang J
    Hear Res; 2009 Jan; 247(1):40-6. PubMed ID: 18992800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurons in the cochlear nucleus investigated with tone and noise stimuli.
    van Gisbergen JA; Grashuis JL; Johannesma PI; Vendrik AJ
    Exp Brain Res; 1975 Oct; 23(4):387-406. PubMed ID: 1183511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response characteristics of cochlear nucleus neurons to 500-Hz tones and noise: findings relating to frequency-following potentials.
    Bledsoe SC; Rupert AL; Moushegian G
    J Neurophysiol; 1982 Jan; 47(1):113-27. PubMed ID: 7057220
    [No Abstract]   [Full Text] [Related]  

  • 35. Single-trial evoked brain responses modeled by multivariate matching pursuit.
    Sieluzycki C; König R; Matysiak A; Kuś R; Ircha D; Durka PJ
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):74-82. PubMed ID: 19224721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Electrographic displays in analyzing sound signals of the frog against a background of the adapting action of noises].
    Egorova MA; Lin'kova LB
    Nerv Sist; 1989; 28():67-78. PubMed ID: 2601785
    [No Abstract]   [Full Text] [Related]  

  • 37. Single neuron recordings in dorsal cochlear nucleus (DCN) of awake gerbil.
    Navawongse R; Voigt HF
    Hear Res; 2009 Sep; 255(1-2):44-57. PubMed ID: 19450672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Background firing in the auditory midbrain of the frog.
    Bibikov NG
    IBRO Rep; 2017 Jun; 2():54-62. PubMed ID: 30135933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning and timing of excitation and inhibition in primary auditory nerve fibers.
    Lewis ER; Henry KR; Yamada WM
    Hear Res; 2002 Sep; 171(1-2):13-31. PubMed ID: 12204346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of the kurtosis statistic in evaluating complex noise exposures for the protection of hearing.
    Davis RI; Qiu W; Hamernik RP
    Ear Hear; 2009 Oct; 30(5):628-34. PubMed ID: 19657275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.