These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 19894685)
1. Chiral separation of racemic phenylglycines in thermolysin crystal: a molecular simulation study. Hu Z; Jiang J J Phys Chem B; 2009 Dec; 113(48):15851-7. PubMed ID: 19894685 [TBL] [Abstract][Full Text] [Related]
2. [Discussion of the application of three-point interaction principle to the phenylglycine racemic compound in IR spectrometry and its enantiomers separation in HPLC]. Shen Y; Yi DN; Liu JN Yao Xue Xue Bao; 2002 Aug; 37(8):636-8. PubMed ID: 12567780 [TBL] [Abstract][Full Text] [Related]
3. Direct resolution of some phenylglycines by liquid chromatography on a chiral crown ether phase. Udvarhelyi PM; Watkins JC Chirality; 1990; 2(3):200-4. PubMed ID: 2252846 [TBL] [Abstract][Full Text] [Related]
4. Enantioresolution of chiral derivatives of xanthones on (S,S)-Whelk-O1 and L-phenylglycine stationary phases and chiral recognition mechanism by docking approach for (S,S)-Whelk-O1. Fernandes C; Palmeira A; Santos A; Tiritan ME; Afonso C; Pinto MM Chirality; 2013 Feb; 25(2):89-100. PubMed ID: 23229954 [TBL] [Abstract][Full Text] [Related]
5. Molecular simulations of solute transport in xylose isomerase crystals. Malek K; Coppens MO J Phys Chem B; 2008 Feb; 112(5):1549-54. PubMed ID: 18198855 [TBL] [Abstract][Full Text] [Related]
6. Separation of amino acids in glucose isomerase crystal: insight from molecular dynamics simulations. Hu Z; Jiang J J Chromatogr A; 2009 Jun; 1216(26):5122-9. PubMed ID: 19447400 [TBL] [Abstract][Full Text] [Related]
7. High-performance liquid chromatographic enantioseparation of alpha-substituted glycine analogs on a quinine-based anion-exchanger chiral stationary phase under variable temperature conditions. Török R; Berkecz R; Péter A J Chromatogr A; 2006 Jul; 1120(1-2):61-8. PubMed ID: 16359689 [TBL] [Abstract][Full Text] [Related]
8. Molecular modeling of chiral-modified zeolite HY employed in enantioselective separation. Jirapongphan SS; Warzywoda J; Budil DE; Sacco A Chirality; 2007 Jun; 19(6):508-13. PubMed ID: 17437263 [TBL] [Abstract][Full Text] [Related]
9. The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulations in vacuum and water. van Aalten DM; Amadei A; Linssen AB; Eijsink VG; Vriend G; Berendsen HJ Proteins; 1995 May; 22(1):45-54. PubMed ID: 7675786 [TBL] [Abstract][Full Text] [Related]
10. Vancomycin as chiral selector for enantioselective separation of selected profen nonsteroidal anti-inflammatory drugs in capillary liquid chromatography. Kafková B; Bosáková Z; Tesarová E; Coufal P; Messina A; Sinibaldi M Chirality; 2006 Aug; 18(7):531-8. PubMed ID: 16634133 [TBL] [Abstract][Full Text] [Related]
11. Application of an eremomycin-chiral stationary phase for the separation of DL-methionine using simulated moving bed technology. Zhang L; Gedicke K; Kuznetsov MA; Staroverov SM; Seidel-Morgenstern A J Chromatogr A; 2007 Aug; 1162(1):90-6. PubMed ID: 17482626 [TBL] [Abstract][Full Text] [Related]
12. Structural scaffold of 18-crown-6 tetracarboxylic acid for optical resolution of chiral amino acid: X-ray crystal analyses and energy calculations of complexes of D- and L-isomers of tyrosine, isoleucine, methionine and phenylglycine. Nagata H; Nishi H; Kamigauchi M; Ishida T Org Biomol Chem; 2004 Dec; 2(23):3470-5. PubMed ID: 15565239 [TBL] [Abstract][Full Text] [Related]
13. Chiral symmetry breaking via crystallization of the glycine and α-amino acid system: a mathematical model. Blanco C; Hochberg D Phys Chem Chem Phys; 2011 Jul; 13(28):12920-34. PubMed ID: 21695347 [TBL] [Abstract][Full Text] [Related]
14. Chiral recognition ability and solvent versatility of bonded amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase: enantioselective liquid chromatographic resolution of racemic N-alkylated barbiturates and thalidomide analogs. Ghanem A; Al-Humaidi E Chirality; 2007 Jun; 19(6):477-84. PubMed ID: 17394130 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics study of chiral recognition for the whelk-O1 chiral stationary phase. Zhao CF; Cann NM Anal Chem; 2008 Apr; 80(7):2426-38. PubMed ID: 18321129 [TBL] [Abstract][Full Text] [Related]
16. Collective effects of multiple chiral selectors on enantioselective adsorption. Bao X; Snurr RQ; Broadbelt LJ Langmuir; 2009 Sep; 25(18):10730-6. PubMed ID: 19583227 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of polymer-type chiral stationary phases and their enantioseparation evaluation by high-performance liquid chromatography. Huang SH; Bai ZW; Yin CQ; Li SR; Pan ZQ Chirality; 2007 Feb; 19(2):129-40. PubMed ID: 17117402 [TBL] [Abstract][Full Text] [Related]
18. Enantioselective aptameric molecular recognition material: Design of a novel chiral stationary phase for enantioseparation of a series of chiral herbicides by capillary electrochromatography. André C; Berthelot A; Thomassin M; Guillaume YC Electrophoresis; 2006 Aug; 27(16):3254-62. PubMed ID: 16865666 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulations for water and ions in protein crystals. Hu Z; Jiang J Langmuir; 2008 Apr; 24(8):4215-23. PubMed ID: 18318554 [TBL] [Abstract][Full Text] [Related]
20. Investigation and characterization of liquid two-phase systems for the separation of crystal mixtures by interfacial partitioning. Hoeben MA; van Hee P; van der Lans RG; Kwant G; van der Wielen LA Biotechnol Bioeng; 2006 Mar; 93(4):607-17. PubMed ID: 16395721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]