These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19894711)

  • 1. Creating protein affinity reagents by combining peptide ligands on synthetic DNA scaffolds.
    Williams BA; Diehnelt CW; Belcher P; Greving M; Woodbury NW; Johnston SA; Chaput JC
    J Am Chem Soc; 2009 Dec; 131(47):17233-41. PubMed ID: 19894711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of high-affinity protein binding ligands--backwards.
    Diehnelt CW; Shah M; Gupta N; Belcher PE; Greving MP; Stafford P; Johnston SA
    PLoS One; 2010 May; 5(5):e10728. PubMed ID: 20502719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic additivity of sequence variations: an algorithm for creating high affinity peptides without large libraries or structural information.
    Greving MP; Belcher PE; Diehnelt CW; Gonzalez-Moa MJ; Emery J; Fu J; Johnston SA; Woodbury NW
    PLoS One; 2010 Nov; 5(11):e15432. PubMed ID: 21085650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-Virus Screening to Develop Synbodies for the Influenza Virus.
    Gupta N; Lainson J; Domenyuk V; Zhao ZG; Johnston SA; Diehnelt CW
    Bioconjug Chem; 2016 Oct; 27(10):2505-2512. PubMed ID: 27658460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a synthetic ligand for tumor necrosis factor-alpha.
    Gupta N; Belcher PE; Johnston SA; Diehnelt CW
    Bioconjug Chem; 2011 Aug; 22(8):1473-8. PubMed ID: 21766818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of the yeast negative regulatory protein GAL80.
    Yun SJ; Hiraoka Y; Nishizawa M; Takio K; Titani K; Nogi Y; Fukasawa T
    J Biol Chem; 1991 Jan; 266(2):693-7. PubMed ID: 1985957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide ligand-based ELISA reagents for antibody detection.
    Heyduk E; Hickey R; Pozzi N; Heyduk T
    Anal Biochem; 2018 Oct; 559():55-61. PubMed ID: 30130491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-Reactive Synbody Affinity Ligands for Capturing Diverse Noroviruses.
    Gupta N; Lainson JC; Belcher PE; Shen L; Mason HS; Johnston SA; Diehnelt CW
    Anal Chem; 2017 Jul; 89(13):7174-7181. PubMed ID: 28640636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized peptides as high-affinity capture agents for self-associating proteins.
    Naffin JL; Han Y; Olivos HJ; Reddy MM; Sun T; Kodadek T
    Chem Biol; 2003 Mar; 10(3):251-9. PubMed ID: 12670539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dextran as a generally applicable multivalent scaffold for improving immunoglobulin-binding affinities of peptide and peptidomimetic ligands.
    Morimoto J; Sarkar M; Kenrick S; Kodadek T
    Bioconjug Chem; 2014 Aug; 25(8):1479-91. PubMed ID: 25073654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptides selected to bind the Gal80 repressor are potent transcriptional activation domains in yeast.
    Han Y; Kodadek T
    J Biol Chem; 2000 May; 275(20):14979-84. PubMed ID: 10809742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac repressor.
    Cull MG; Miller JF; Schatz PJ
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1865-9. PubMed ID: 1347427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity selective isolation of ligands from peptide libraries through display on a lac repressor "headpiece dimer".
    Gates CM; Stemmer WP; Kaptein R; Schatz PJ
    J Mol Biol; 1996 Jan; 255(3):373-86. PubMed ID: 8568883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput method for ranking the affinity of peptide ligands selected from phage display libraries.
    González-Techera A; Umpiérrez-Failache M; Cardozo S; Obal G; Pritsch O; Last JA; Gee SJ; Hammock BD; González-Sapienza G
    Bioconjug Chem; 2008 May; 19(5):993-1000. PubMed ID: 18393454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The identification of affinity peptide ligands specific to the variable region of human antibodies.
    Akiyama Y; Miyata H; Komiyama M; Nogami M; Ozawa K; Oshita C; Kume A; Ashizawa T; Sakura N; Mochizuki T; Yamaguchi K
    Biomed Res; 2014; 35(2):105-16. PubMed ID: 24759178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-affinity binding to the SARS-CoV-2 spike trimer by a nanostructured, trivalent protein-DNA synthetic antibody.
    Xu Y; Zheng R; Prasad A; Liu M; Wan Z; Zhou X; Porter RM; Sample M; Poppleton E; Procyk J; Liu H; Li Y; Wang S; Yan H; Sulc P; Stephanopoulos N
    bioRxiv; 2023 Sep; ():. PubMed ID: 37790307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and quantification of protein carbonylation using light and heavy isotope labeled Girard's P reagent.
    Mirzaei H; Regnier F
    J Chromatogr A; 2006 Nov; 1134(1-2):122-33. PubMed ID: 16996067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic antibody libraries focused towards peptide ligands.
    Cobaugh CW; Almagro JC; Pogson M; Iverson B; Georgiou G
    J Mol Biol; 2008 May; 378(3):622-33. PubMed ID: 18384812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and application of peptide-binding peptides.
    Zhang Z; Zhu W; Kodadek T
    Nat Biotechnol; 2000 Jan; 18(1):71-4. PubMed ID: 10625395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential application of antibody-mimicking peptides identified by phage display in immuno-magnetic separation of an antigen.
    Hien TB; Maeng JH; Lee BH; Seong GH; Choo J; Lee EK
    J Biotechnol; 2012 Oct; 161(3):213-20. PubMed ID: 22796092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.