These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 19894770)
1. Metallopeptide based mimics with substituted histidines approximate a key hydrogen bonding network in the metalloenzyme nickel superoxide dismutase. Shearer J; Neupane KP; Callan PE Inorg Chem; 2009 Nov; 48(22):10560-71. PubMed ID: 19894770 [TBL] [Abstract][Full Text] [Related]
2. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics. Shearer J Acc Chem Res; 2014 Aug; 47(8):2332-41. PubMed ID: 24825124 [TBL] [Abstract][Full Text] [Related]
3. Cysteinate protonation and water hydrogen bonding at the active-site of a nickel superoxide dismutase metallopeptide-based mimic: implications for the mechanism of superoxide reduction. Shearer J; Peck KL; Schmitt JC; Neupane KP J Am Chem Soc; 2014 Nov; 136(45):16009-22. PubMed ID: 25322331 [TBL] [Abstract][Full Text] [Related]
4. Adiabaticity of the proton-coupled electron-transfer step in the reduction of superoxide effected by nickel-containing superoxide dismutase metallopeptide-based mimics. Shearer J; Schmitt JC; Clewett HS J Phys Chem B; 2015 Apr; 119(17):5453-61. PubMed ID: 25850940 [TBL] [Abstract][Full Text] [Related]
5. Dioxygen and superoxide stability of metallopeptide based mimics of nickel containing superoxide dismutase: the influence of amine/amidate vs. bis-amidate ligation. Shearer J J Inorg Biochem; 2013 Dec; 129():145-9. PubMed ID: 24121677 [TBL] [Abstract][Full Text] [Related]
6. A novel square-planar Ni(II) complex with an amino-carboxamido-dithiolato-type ligand as an active-site model of NiSOD. Nakane D; Wasada-Tsutsui Y; Funahashi Y; Hatanaka T; Ozawa T; Masuda H Inorg Chem; 2014 Jul; 53(13):6512-23. PubMed ID: 24940594 [TBL] [Abstract][Full Text] [Related]
7. The influence of amine/amide versus bisamide coordination in nickel superoxide dismutase. Neupane KP; Shearer J Inorg Chem; 2006 Dec; 45(26):10552-66. PubMed ID: 17173410 [TBL] [Abstract][Full Text] [Related]
8. Probing variable amine/amide ligation in Ni(II)N2S2 complexes using sulfur K-edge and nickel L-edge X-ray absorption spectroscopies: implications for the active site of nickel superoxide dismutase. Shearer J; Dehestani A; Abanda F Inorg Chem; 2008 Apr; 47(7):2649-60. PubMed ID: 18330983 [TBL] [Abstract][Full Text] [Related]
9. ENDOR and ESEEM investigation of the Ni-containing superoxide dismutase. Lee HI; Lee JW; Yang TC; Kang SO; Hoffman BM J Biol Inorg Chem; 2010 Feb; 15(2):175-82. PubMed ID: 19707802 [TBL] [Abstract][Full Text] [Related]
10. Probing variable axial ligation in nickel superoxide dismutase utilizing metallopeptide-based models: insight into the superoxide disproportionation mechanism. Neupane KP; Gearty K; Francis A; Shearer J J Am Chem Soc; 2007 Nov; 129(47):14605-18. PubMed ID: 17985883 [TBL] [Abstract][Full Text] [Related]
11. A nickel superoxide dismutase maquette that reproduces the spectroscopic and functional properties of the metalloenzyme. Shearer J; Long LM Inorg Chem; 2006 Mar; 45(6):2358-60. PubMed ID: 16529443 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic and computational studies of Ni superoxide dismutase: electronic structure contributions to enzymatic function. Fiedler AT; Bryngelson PA; Maroney MJ; Brunold TC J Am Chem Soc; 2005 Apr; 127(15):5449-62. PubMed ID: 15826182 [TBL] [Abstract][Full Text] [Related]
13. Use of a metallopeptide-based mimic provides evidence for a proton-coupled electron-transfer mechanism for superoxide reduction by nickel-containing superoxide dismutase. Shearer J Angew Chem Int Ed Engl; 2013 Feb; 52(9):2569-72. PubMed ID: 23341243 [TBL] [Abstract][Full Text] [Related]
14. Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD. Broering EP; Dillon S; Gale EM; Steiner RA; Telser J; Brunold TC; Harrop TC Inorg Chem; 2015 Apr; 54(8):3815-28. PubMed ID: 25835183 [TBL] [Abstract][Full Text] [Related]
15. Dipeptide-based models of nickel superoxide dismutase: solvent effects highlight a critical role to Ni-S bonding and active site stabilization. Gale EM; Cowart DM; Scott RA; Harrop TC Inorg Chem; 2011 Oct; 50(20):10460-71. PubMed ID: 21932766 [TBL] [Abstract][Full Text] [Related]
16. Exploring the effects of H-bonding in synthetic analogues of nickel superoxide dismutase (Ni-SOD): experimental and theoretical implications for protection of the Ni-SCys bond. Gale EM; Narendrapurapu BS; Simmonett AC; Schaefer HF; Harrop TC Inorg Chem; 2010 Aug; 49(15):7080-96. PubMed ID: 20575514 [TBL] [Abstract][Full Text] [Related]
17. Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity. Domergue J; Pécaut J; Proux O; Lebrun C; Gateau C; Le Goff A; Maldivi P; Duboc C; Delangle P Inorg Chem; 2019 Oct; 58(19):12775-12785. PubMed ID: 31545024 [TBL] [Abstract][Full Text] [Related]
18. A Semisynthetic Strategy Leads to Alteration of the Backbone Amidate Ligand in the NiSOD Active Site. Campeciño JO; Dudycz LW; Tumelty D; Berg V; Cabelli DE; Maroney MJ J Am Chem Soc; 2015 Jul; 137(28):9044-52. PubMed ID: 26135142 [TBL] [Abstract][Full Text] [Related]
19. Bisamidate and mixed amine/amidate NiN2S2 complexes as models for nickel-containing acetyl coenzyme A synthase and superoxide dismutase: an experimental and computational study. Mathrubootham V; Thomas J; Staples R; McCraken J; Shearer J; Hegg EL Inorg Chem; 2010 Jun; 49(12):5393-406. PubMed ID: 20507077 [TBL] [Abstract][Full Text] [Related]