BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 19894774)

  • 1. Detecting changes in the thiol redox state of proteins following a decrease in oxygen concentration using a dual labeling technique.
    Lui JK; Lipscombe R; Arthur PG
    J Proteome Res; 2010 Jan; 9(1):383-92. PubMed ID: 19894774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis.
    Baty JW; Hampton MB; Winterbourn CC
    Proteomics; 2002 Sep; 2(9):1261-6. PubMed ID: 12362344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-disulfide redox proteomics in plant research.
    Muthuramalingam M; Dietz KJ; Ströher E
    Methods Mol Biol; 2010; 639():219-38. PubMed ID: 20387049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis.
    Hochgräfe F; Mostertz J; Albrecht D; Hecker M
    Mol Microbiol; 2005 Oct; 58(2):409-25. PubMed ID: 16194229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis.
    Chan HL; Gharbi S; Gaffney PR; Cramer R; Waterfield MD; Timms JF
    Proteomics; 2005 Jul; 5(11):2908-26. PubMed ID: 15954156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of redox-dependent changes using cysteine-labeling 2D DIGE.
    Chan HL; Sinclair J; Timms JF
    Methods Mol Biol; 2012; 854():113-28. PubMed ID: 22311756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption.
    Venkatraman A; Landar A; Davis AJ; Ulasova E; Page G; Murphy MP; Darley-Usmar V; Bailey SM
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescent dual labeling technique for the quantitative measurement of reduced and oxidized protein thiols in tissue samples.
    Armstrong AE; Zerbes R; Fournier PA; Arthur PG
    Free Radic Biol Med; 2011 Feb; 50(4):510-7. PubMed ID: 21109000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General method to identify and enrich vicinal thiol proteins present in intact cells in the oxidized, disulfide state.
    Gitler C; Zarmi B; Kalef E
    Anal Biochem; 1997 Oct; 252(1):48-55. PubMed ID: 9324940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-thiol oxidation, from single proteins to proteome-wide analyses.
    Le Moan N; Tacnet F; Toledano MB
    Methods Mol Biol; 2008; 476():181-98. PubMed ID: 19157017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress.
    Wagner E; Luche S; Penna L; Chevallet M; Van Dorsselaer A; Leize-Wagner E; Rabilloud T
    Biochem J; 2002 Sep; 366(Pt 3):777-85. PubMed ID: 12059788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune oxidative injury induced in mice exposed to normobaric O2: effects of thiol compounds on the splenic cell sulfhydryl content and Con A proliferative response.
    Gougerot-Pocidalo MA; Fay M; Roche Y; Lacombe P; Marquetty C
    J Immunol; 1985 Sep; 135(3):2045-51. PubMed ID: 4020138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat.
    Bykova NV; Hoehn B; Rampitsch C; Hu J; Stebbing JA; Knox R
    Phytochemistry; 2011 Jul; 72(10):1162-72. PubMed ID: 21295800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease.
    McKenzie SJ; Baker MS; Buffinton GD; Doe WF
    J Clin Invest; 1996 Jul; 98(1):136-41. PubMed ID: 8690784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein profiling the effects of in vitro hyperoxic exposure on fetal rabbit lung.
    Henschke P; Vorum H; Honoré B; Rice GE
    Proteomics; 2006 Mar; 6(6):1957-62. PubMed ID: 16447161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic thiol-disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility.
    Ströher E; Dietz KJ
    Physiol Plant; 2008 Jul; 133(3):566-83. PubMed ID: 18433418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.