BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 19894777)

  • 1. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections.
    Hassuna N; Monk PN; Moseley GW; Partridge LJ
    BioDrugs; 2009; 23(6):341-59. PubMed ID: 19894777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetraspanins: gateways for infection.
    Monk PN; Partridge LJ
    Infect Disord Drug Targets; 2012 Feb; 12(1):4-17. PubMed ID: 22034932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of tetraspanins in bacterial infections.
    Karam J; Méresse S; Kremer L; Daher W
    Cell Microbiol; 2020 Dec; 22(12):e13260. PubMed ID: 32902857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of tetraspanins in the pathogenesis of infectious diseases.
    van Spriel AB; Figdor CG
    Microbes Infect; 2010 Feb; 12(2):106-12. PubMed ID: 19896556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetraspanin Assemblies in Virus Infection.
    Florin L; Lang T
    Front Immunol; 2018; 9():1140. PubMed ID: 29887866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells.
    Weng J; Krementsov DN; Khurana S; Roy NH; Thali M
    J Virol; 2009 Aug; 83(15):7467-74. PubMed ID: 19458002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clathrin- and caveolin-independent entry of human papillomavirus type 16--involvement of tetraspanin-enriched microdomains (TEMs).
    Spoden G; Freitag K; Husmann M; Boller K; Sapp M; Lambert C; Florin L
    PLoS One; 2008 Oct; 3(10):e3313. PubMed ID: 18836553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells.
    Green LR; Monk PN; Partridge LJ; Morris P; Gorringe AR; Read RC
    Infect Immun; 2011 Jun; 79(6):2241-9. PubMed ID: 21464080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains.
    Earnest JT; Hantak MP; Park JE; Gallagher T
    J Virol; 2015 Jun; 89(11):6093-104. PubMed ID: 25833045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general approach to the generation of monoclonal antibodies against members of the tetraspanin superfamily using recombinant GST fusion proteins.
    Azorsa DO; Moog S; Cazenave JP; Lanza F
    J Immunol Methods; 1999 Oct; 229(1-2):35-48. PubMed ID: 10556689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of tetraspanin proteins--potential benefits and strategies.
    Hemler ME
    Nat Rev Drug Discov; 2008 Sep; 7(9):747-58. PubMed ID: 18758472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains.
    Protty MB; Watkins NA; Colombo D; Thomas SG; Heath VL; Herbert JM; Bicknell R; Senis YA; Ashman LK; Berditchevski F; Ouwehand WH; Watson SP; Tomlinson MG
    Biochem J; 2009 Jan; 417(1):391-400. PubMed ID: 18795891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9.
    Kovalenko OV; Yang XH; Hemler ME
    Mol Cell Proteomics; 2007 Nov; 6(11):1855-67. PubMed ID: 17644758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells.
    Parthasarathy V; Martin F; Higginbottom A; Murray H; Moseley GW; Read RC; Mal G; Hulme R; Monk PN; Partridge LJ
    Immunology; 2009 Jun; 127(2):237-48. PubMed ID: 19489128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets.
    Israels SJ; McMillan-Ward EM
    Thromb Res; 2010 Feb; 125(2):152-8. PubMed ID: 19640571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetraspanin-enriched Microdomain Containing CD151, CD9, and TSPAN 8 - Potential Mediators of Entry and Exit Mechanisms in Respiratory Viruses Including SARS-CoV-2.
    Malla R; Kamal MA
    Curr Pharm Des; 2022; 28(46):3649-3657. PubMed ID: 36173052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins.
    Sato K; Aoki J; Misawa N; Daikoku E; Sano K; Tanaka Y; Koyanagi Y
    J Virol; 2008 Jan; 82(2):1021-33. PubMed ID: 17989173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Regulation and Oncogenic Functions of TSPAN8.
    Yang J; Zhang Z; Lam JSW; Fan H; Fu NY
    Cells; 2024 Jan; 13(2):. PubMed ID: 38275818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1.
    Nydegger S; Khurana S; Krementsov DN; Foti M; Thali M
    J Cell Biol; 2006 Jun; 173(5):795-807. PubMed ID: 16735575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily.
    Seigneuret M
    Biophys J; 2006 Jan; 90(1):212-27. PubMed ID: 16352525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.