These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19894822)

  • 1. A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics.
    Zilany MS; Bruce IC; Nelson PC; Carney LH
    J Acoust Soc Am; 2009 Nov; 126(5):2390-412. PubMed ID: 19894822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of models for the synapse between the inner hair cell and the auditory nerve.
    Zhang X; Carney LH
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1540-53. PubMed ID: 16240815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation in a revised inner-hair cell model.
    Sumner CJ; Lopez-Poveda EA; O'Mard LP; Meddis R
    J Acoust Soc Am; 2003 Feb; 113(2):893-901. PubMed ID: 12597183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recovery from adaptation in human compound action potential following forward masking].
    Nishino H; Ohashi T
    Nihon Jibiinkoka Gakkai Kaiho; 2001 Aug; 104(8):796-804. PubMed ID: 11558156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer model of the auditory-nerve response to forward-masking stimuli.
    Meddis R; O'Mard LP
    J Acoust Soc Am; 2005 Jun; 117(6):3787-98. PubMed ID: 16018482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.
    Goutman JD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9719-9724. PubMed ID: 28827351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonotopic distribution of short-term adaptation properties in the cochlear nerve of normal and acoustically overexposed chicks.
    Crumling MA; Saunders JC
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):54-68. PubMed ID: 17200911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loudness adaptation accompanying ribbon synapse and auditory nerve disorders.
    Wynne DP; Zeng FG; Bhatt S; Michalewski HJ; Dimitrijevic A; Starr A
    Brain; 2013 May; 136(Pt 5):1626-38. PubMed ID: 23503620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
    Zilany MS; Carney LH
    J Neurosci; 2010 Aug; 30(31):10380-90. PubMed ID: 20685981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating temporal asymmetry using masking period patterns and models of peripheral auditory processing.
    Lentz JJ; Shen Y
    J Acoust Soc Am; 2011 May; 129(5):3194-205. PubMed ID: 21568421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear processes reflected in responses of the cochlear nerve.
    Smith RL
    Acta Otolaryngol; 1985; 100(1-2):1-12. PubMed ID: 2992224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Krüger B; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inner hair cell responses to tonal stimulation in the presence of broadband noise.
    Dolan DF; Nuttall AL
    J Acoust Soc Am; 1989 Sep; 86(3):1007-12. PubMed ID: 2794238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A diffusion model of the transient response of the cochlear inner hair cell synapse.
    Westerman LA; Smith RL
    J Acoust Soc Am; 1988 Jun; 83(6):2266-76. PubMed ID: 3411018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that rapid vesicle replenishment of the synaptic ribbon mediates recovery from short-term adaptation at the hair cell afferent synapse.
    Spassova MA; Avissar M; Furman AC; Crumling MA; Saunders JC; Parsons TD
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):376-90. PubMed ID: 15675002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell.
    Schwid HA; Geisler CD
    J Acoust Soc Am; 1982 Nov; 72(5):1435-40. PubMed ID: 6129270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Updated parameters and expanded simulation options for a model of the auditory periphery.
    Zilany MS; Bruce IC; Carney LH
    J Acoust Soc Am; 2014 Jan; 135(1):283-6. PubMed ID: 24437768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.