These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Stimulus characteristics which lessen the impact of threshold fine structure on estimates of hearing status. Lee J; Long G Hear Res; 2012 Jan; 283(1-2):24-32. PubMed ID: 22178980 [TBL] [Abstract][Full Text] [Related]
5. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state? Abel C; Wittekindt A; Kössl M J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155 [TBL] [Abstract][Full Text] [Related]
6. Correlation of transiently evoked otoacoustic emission measures to auditory thresholds. Balatsouras D; Kaberos A; Karapantzos E; Homsioglou E; Economou NC; Korres S Med Sci Monit; 2004 Feb; 10(2):MT24-30. PubMed ID: 14737052 [TBL] [Abstract][Full Text] [Related]
7. The influence of spread of excitation on the detection of amplitude modulation imposed on sinusoidal carriers at high levels. Millman RE; Bacon SP J Acoust Soc Am; 2008 Feb; 123(2):1008-16. PubMed ID: 18247903 [TBL] [Abstract][Full Text] [Related]
9. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. Epp B; Verhey JL; Mauermann M J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359 [TBL] [Abstract][Full Text] [Related]
10. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736 [TBL] [Abstract][Full Text] [Related]
11. Automatic screening and detection of threshold fine structure. Heise SJ; Verhey JL; Mauermann M Int J Audiol; 2008 Aug; 47(8):520-32. PubMed ID: 18698525 [TBL] [Abstract][Full Text] [Related]
12. Transient-evoked otoacoustic emissions in a representative population sample aged 18 to 25 years. Ferguson MA; Smith PA; Davis AC; Lutman ME Audiology; 2000; 39(3):125-34. PubMed ID: 10905398 [TBL] [Abstract][Full Text] [Related]
13. Distortion product emissions in humans. I. Basic properties in normally hearing subjects. Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797 [TBL] [Abstract][Full Text] [Related]
14. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study. Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276 [TBL] [Abstract][Full Text] [Related]
15. [Study of the correspondence between pure tone and distorsion product otoacoustic emissions audiometrics: basis for an objective cochlear audiometrics model]. Jürgens A; Buisan A; Canela M; Abelló P Acta Otorrinolaringol Esp; 1999 May; 50(4):253-9. PubMed ID: 10431072 [TBL] [Abstract][Full Text] [Related]
16. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain. Abel C; Kössl M J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870 [TBL] [Abstract][Full Text] [Related]