These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 19894829)

  • 1. Investigating possible mechanisms behind the effect of threshold fine structure on amplitude modulation perception.
    Heise SJ; Mauermann M; Verhey JL
    J Acoust Soc Am; 2009 Nov; 126(5):2490-500. PubMed ID: 19894829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold fine structure affects amplitude modulation perception.
    Heise SJ; Mauermann M; Verhey JL
    J Acoust Soc Am; 2009 Jan; 125(1):EL33-8. PubMed ID: 19173380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus characteristics which lessen the impact of threshold fine structure on estimates of hearing status.
    Lee J; Long G
    Hear Res; 2012 Jan; 283(1-2):24-32. PubMed ID: 22178980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of transiently evoked otoacoustic emission measures to auditory thresholds.
    Balatsouras D; Kaberos A; Karapantzos E; Homsioglou E; Economou NC; Korres S
    Med Sci Monit; 2004 Feb; 10(2):MT24-30. PubMed ID: 14737052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of spread of excitation on the detection of amplitude modulation imposed on sinusoidal carriers at high levels.
    Millman RE; Bacon SP
    J Acoust Soc Am; 2008 Feb; 123(2):1008-16. PubMed ID: 18247903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones.
    Bian L; Chen S
    J Acoust Soc Am; 2011 Feb; 129(2):828-39. PubMed ID: 21361441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips.
    Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP
    Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic screening and detection of threshold fine structure.
    Heise SJ; Verhey JL; Mauermann M
    Int J Audiol; 2008 Aug; 47(8):520-32. PubMed ID: 18698525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient-evoked otoacoustic emissions in a representative population sample aged 18 to 25 years.
    Ferguson MA; Smith PA; Davis AC; Lutman ME
    Audiology; 2000; 39(3):125-34. PubMed ID: 10905398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of the correspondence between pure tone and distorsion product otoacoustic emissions audiometrics: basis for an objective cochlear audiometrics model].
    Jürgens A; Buisan A; Canela M; Abelló P
    Acta Otorrinolaringol Esp; 1999 May; 50(4):253-9. PubMed ID: 10431072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cochlear hearing disorders: normative distortion product otoacoustic emission measurements.
    Mills DM; Feeney MP; Gates GA
    Ear Hear; 2007 Dec; 28(6):778-92. PubMed ID: 17982366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of temporal asymmetry on amplitude modulation detection using pure-tone carriers (L).
    Shen Y; Lentz JJ
    J Acoust Soc Am; 2011 Nov; 130(5):2635-8. PubMed ID: 22087889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic emissions in an industrial setting.
    Korres GS; Balatsouras DG; Tzagaroulakis A; Kandiloros D; Ferekidou E; Korres S
    Noise Health; 2009; 11(43):103-10. PubMed ID: 19414930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.