These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19894850)

  • 1. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy.
    Freund JB; Shukla RK; Evan AP
    J Acoust Soc Am; 2009 Nov; 126(5):2746-56. PubMed ID: 19894850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Increased fragmentation efficiency by enhancement of cavitation for extracorporal shock wave lithotripsy].
    Loske AM; Fernández F; Gutiérrez J
    Z Med Phys; 2005; 15(1):53-8. PubMed ID: 15830785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment protocols to reduce renal injury during shock wave lithotripsy.
    McAteer JA; Evan AP; Williams JC; Lingeman JE
    Curr Opin Urol; 2009 Mar; 19(2):192-5. PubMed ID: 19195131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.
    Tham LM; Lee HP; Lu C
    J Urol; 2007 Jul; 178(1):314-9. PubMed ID: 17499770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy.
    Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE
    J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prospective, randomized study of the clinical effects of shock wave delivery for unilateral kidney stones: 60 versus 120 shocks per minute.
    Ng CF; Lo AK; Lee KW; Wong KT; Chung WY; Gohel D
    J Urol; 2012 Sep; 188(3):837-42. PubMed ID: 22819406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.
    Weinberg K; Ortiz M
    Biomech Model Mechanobiol; 2009 Aug; 8(4):285-99. PubMed ID: 18807077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithotripsy.
    Leighton TG; Cleveland RO
    Proc Inst Mech Eng H; 2010; 224(2):317-42. PubMed ID: 20349822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.
    Loske AM; Prieto FE; Fernandez F; van Cauwelaert J
    Phys Med Biol; 2002 Nov; 47(22):3945-57. PubMed ID: 12476975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy.
    Freund JB; Colonius T; Evan AP
    Ultrasound Med Biol; 2007 Sep; 33(9):1495-503. PubMed ID: 17507147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmentation of brittle material by shock wave lithotripsy. Momentum transfer and inertia: a novel view on fragmentation mechanisms.
    Wess OJ; Mayer J
    Urolithiasis; 2020 Apr; 48(2):137-149. PubMed ID: 30523389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
    Kobayashi K; Kodama T; Takahira H
    Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute.
    Handa RK; McAteer JA; Evan AP; Connors BA; Pishchalnikov YA; Gao S
    J Urol; 2009 Feb; 181(2):884-9. PubMed ID: 19095269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Stepwise Voltage Escalation on Treatment Outcomes following Extracorporeal Shock Wave Lithotripsy of Renal Calculi: A Prospective Randomized Study.
    Ng CF; Yee CH; Teoh JYC; Lau B; Leung SCH; Wong CYP; Wong KT; Chu WCW; Yuen J
    J Urol; 2019 Nov; 202(5):986-993. PubMed ID: 31112104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves.
    Pishchalnikov YA; Sapozhnikov OA; Bailey MR; Williams JC; Cleveland RO; Colonius T; Crum LA; Evan AP; McAteer JA
    J Endourol; 2003 Sep; 17(7):435-46. PubMed ID: 14565872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping.
    Connors BA; Evan AP; Blomgren PM; Handa RK; Willis LR; Gao S
    BJU Int; 2009 Jan; 103(1):104-7. PubMed ID: 18680494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock-induced collapse of a gas bubble in shockwave lithotripsy.
    Johnsen E; Colonius T
    J Acoust Soc Am; 2008 Oct; 124(4):2011-20. PubMed ID: 19062841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
    Cleveland RO; Sapozhnikov OA
    J Acoust Soc Am; 2005 Oct; 118(4):2667-76. PubMed ID: 16266186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves.
    Willis LR; Evan AP; Connors BA; Handa RK; Blomgren PM; Lingeman JE
    J Am Soc Nephrol; 2006 Mar; 17(3):663-73. PubMed ID: 16452495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.