These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19894855)

  • 1. Linear behavior of a preformed microbubble containing light absorbing nanoparticles: insight from a mathematical model.
    Sassaroli E; Li KC; O'Neill BE
    J Acoust Soc Am; 2009 Nov; 126(5):2802-13. PubMed ID: 19894855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling photothermal and acoustical induced microbubble generation and growth.
    Krasovitski B; Kislev H; Kimmel E
    Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantages in using multifrequency excitation of contrast microbubbles for enhancing echo particle image velocimetry techniques: initial numerical studies using rectangular and triangular waves.
    Zheng H; Mukdadi O; Kim H; Hertzberg JR; Shandas R
    Ultrasound Med Biol; 2005 Jan; 31(1):99-108. PubMed ID: 15653236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of an approximate model for the thermal behavior in acoustically driven bubbles.
    Stricker L; Prosperetti A; Lohse D
    J Acoust Soc Am; 2011 Nov; 130(5):3243-51. PubMed ID: 22087996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonspherical oscillations of ultrasound contrast agent microbubbles.
    Dollet B; van der Meer SM; Garbin V; de Jong N; Lohse D; Versluis M
    Ultrasound Med Biol; 2008 Sep; 34(9):1465-73. PubMed ID: 18450362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound attenuation in encapsulated microbubble suspensions: The multiple scattering effects.
    Chen J; Zhu Z
    Ultrasound Med Biol; 2006 Jun; 32(6):961-9. PubMed ID: 16785017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gold nanoparticles on the stability of microbubbles.
    Mohamedi G; Azmin M; Pastoriza-Santos I; Huang V; Pérez-Juste J; Liz-Marzán LM; Edirisinghe M; Stride E
    Langmuir; 2012 Oct; 28(39):13808-15. PubMed ID: 22928997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic bubbles in medicine: influence of the shell.
    Postema M; Schmitz G
    Ultrason Sonochem; 2007 Apr; 14(4):438-44. PubMed ID: 17218145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness.
    Doinikov AA; Aired L; Bouakaz A
    Phys Med Biol; 2011 Nov; 56(21):6951-67. PubMed ID: 22008736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient subharmonic and ultraharmonic acoustic emission during dissolution of free gas bubbles.
    Biagi E; Breschi L; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):1048-54. PubMed ID: 16118987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law.
    Tsiglifis K; Pelekasis NA
    J Acoust Soc Am; 2008 Jun; 123(6):4059-70. PubMed ID: 18537358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound-induced encapsulated microbubble phenomena.
    Postema M; van Wamel A; Lancée CT; de Jong N
    Ultrasound Med Biol; 2004 Jun; 30(6):827-40. PubMed ID: 15219962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation.
    McLaughlan JR; Roy RA; Ju H; Murray TW
    Opt Lett; 2010 Jul; 35(13):2127-9. PubMed ID: 20596168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically induced resonance of nanoparticle-loaded microbubbles.
    Dove JD; Borden MA; Murray TW
    Opt Lett; 2014 Jul; 39(13):3732-5. PubMed ID: 24978723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging.
    Yang F; Li Y; Chen Z; Zhang Y; Wu J; Gu N
    Biomaterials; 2009 Aug; 30(23-24):3882-90. PubMed ID: 19395082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial modulation imaging of microbubble contrast agents at high frequency.
    Chérin E; Brown J; Måsøy SE; Shariff H; Karshafian R; Williams R; Burns PN; Foster FS
    Ultrasound Med Biol; 2008 Jun; 34(6):949-62. PubMed ID: 18294758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.