These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19894929)

  • 1. A diffusional bimolecular propensity function.
    Gillespie DT
    J Chem Phys; 2009 Oct; 131(16):164109. PubMed ID: 19894929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The small-voxel tracking algorithm for simulating chemical reactions among diffusing molecules.
    Gillespie DT; Seitaridou E; Gillespie CA
    J Chem Phys; 2014 Dec; 141(23):234115. PubMed ID: 25527927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions.
    Chevalier MW; El-Samad H
    J Chem Phys; 2014 Dec; 141(21):214108. PubMed ID: 25481130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspective: Stochastic algorithms for chemical kinetics.
    Gillespie DT; Hellander A; Petzold LR
    J Chem Phys; 2013 May; 138(17):170901. PubMed ID: 23656106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of reactant size on discrete stochastic chemical kinetics.
    Gillespie DT; Lampoudi S; Petzold LR
    J Chem Phys; 2007 Jan; 126(3):034302. PubMed ID: 17249866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity conditions for stochastic chemical kinetics in diffusion-limited systems.
    Gillespie DT; Petzold LR; Seitaridou E
    J Chem Phys; 2014 Feb; 140(5):054111. PubMed ID: 24511926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems.
    Lampoudi S; Gillespie DT; Petzold LR
    J Chem Phys; 2009 Mar; 130(9):094104. PubMed ID: 19275393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A convergent reaction-diffusion master equation.
    Isaacson SA
    J Chem Phys; 2013 Aug; 139(5):054101. PubMed ID: 23927237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.
    Horowitz JM
    J Chem Phys; 2015 Jul; 143(4):044111. PubMed ID: 26233111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: A scaling approach to anomalous diffusion.
    Kneller GR
    J Chem Phys; 2014 Jul; 141(4):041105. PubMed ID: 25084871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic simulation of chemical kinetics.
    Gillespie DT
    Annu Rev Phys Chem; 2007; 58():35-55. PubMed ID: 17037977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimolecular Master Equations for a Single and Multiple Potential Wells with Analytic Solutions.
    Ghaderi N
    J Phys Chem A; 2018 Apr; 122(14):3506-3534. PubMed ID: 29583011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-influenced reaction rates in the presence of pair interactions.
    Dibak M; Fröhner C; Noé F; Höfling F
    J Chem Phys; 2019 Oct; 151(16):164105. PubMed ID: 31675872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions.
    Erban R; Chapman SJ
    Phys Biol; 2009 Aug; 6(4):046001. PubMed ID: 19700812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of bimolecular reaction models for stochastic reaction-diffusion systems.
    Agbanusi IC; Isaacson SA
    Bull Math Biol; 2014 Apr; 76(4):922-46. PubMed ID: 23579988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic simulation of chemical reactions with spatial resolution and single molecule detail.
    Andrews SS; Bray D
    Phys Biol; 2004 Dec; 1(3-4):137-51. PubMed ID: 16204833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods.
    Ramaswamy R; Sbalzarini IF
    J Chem Phys; 2011 Dec; 135(24):244103. PubMed ID: 22225140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular finite-size effects in stochastic models of equilibrium chemical systems.
    Cianci C; Smith S; Grima R
    J Chem Phys; 2016 Feb; 144(8):084101. PubMed ID: 26931675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.