These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19894940)

  • 1. Correction to the Clausius-Mosotti equation: The dielectric constant of nonpolar fluids from Monte Carlo simulations.
    Valiskó M; Boda D
    J Chem Phys; 2009 Oct; 131(16):164120. PubMed ID: 19894940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic properties of van der Waals fluids from Monte Carlo simulations and perturbative Monte Carlo theory.
    Díez A; Largo J; Solana JR
    J Chem Phys; 2006 Aug; 125(7):074509. PubMed ID: 16942353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation and self-consistent integral equation theory for polymers in quenched random media.
    Sung BJ; Yethiraj A
    J Chem Phys; 2005 Aug; 123(7):074909. PubMed ID: 16229622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface tension of associating fluids by Monte Carlo simulations.
    Tapia-Medina C; Orea P; Mier-Y-Teran L; Alejandre J
    J Chem Phys; 2004 Feb; 120(5):2337-42. PubMed ID: 15268372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric constants of simple liquids: stockmayer and ellipsoidal fluids.
    Johnson LE; Barnes R; Draxler TW; Eichinger BE; Robinson BH
    J Phys Chem B; 2010 Jul; 114(25):8431-40. PubMed ID: 20527870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory.
    Díez A; Largo J; Solana JR
    J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of density functional methods to predict dielectric properties of polymers.
    Ruuska H; Arola E; Kannus K; Rantala TT; Valkealahti S
    J Chem Phys; 2008 Feb; 128(6):064109. PubMed ID: 18282030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric response of one-dimensional polar chains.
    Matyushov DV
    J Chem Phys; 2007 Aug; 127(5):054702. PubMed ID: 17688352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced permittivity increment of electrorheological fluids in an applied electric field in association with chain formation: A Brownian dynamics simulation study.
    Fertig D; Boda D; Szalai I
    Phys Rev E; 2021 Jun; 103(6-1):062608. PubMed ID: 34271759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative permittivity of polar liquids. Comparison of theory, experiment, and simulation.
    Valiskó M; Boda D
    J Phys Chem B; 2005 Apr; 109(13):6355-65. PubMed ID: 16851708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the pair and triplet structures of the quantum hard-sphere Yukawa fluid.
    Sesé LM
    J Chem Phys; 2009 Feb; 130(7):074504. PubMed ID: 19239299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo study of the freezing transition of hard spheres.
    Nayhouse M; Amlani AM; Orkoulas G
    J Phys Condens Matter; 2011 Aug; 23(32):325106. PubMed ID: 21795778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154906. PubMed ID: 19045228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatics on the sphere with applications to Monte Carlo simulations of two dimensional polar fluids.
    Caillol JM
    J Chem Phys; 2015 Apr; 142(15):154505. PubMed ID: 25903895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patchy sticky hard spheres: analytical study and Monte Carlo simulations.
    Fantoni R; Gazzillo D; Giacometti A; Miller MA; Pastore G
    J Chem Phys; 2007 Dec; 127(23):234507. PubMed ID: 18154400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulations and theoretical aspects of the depletion interaction in protein-oligomer mixtures.
    Boncina M; Rescic J; Kalyuzhnyi YV; Vlachy V
    J Chem Phys; 2007 Jul; 127(3):035103. PubMed ID: 17655465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference interaction site model investigation of homonuclear hard dumbbells under simple fluid theory closures: comparison with Monte Carlo simulations.
    Munaò G; Costa D; Caccamo C
    J Chem Phys; 2009 Apr; 130(14):144504. PubMed ID: 19368458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of a Hard Sphere Fluid in Disordered Microporous Quenched Matrix of Short Chain Molecules: Integral Equations and Grand Canonical Monte Carlo Simulations.
    Malo BM; Pizio O; Trokhymchuk A; Duda Y
    J Colloid Interface Sci; 1999 Mar; 211(2):387-394. PubMed ID: 10049555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations.
    Daoulas KCh; Müller M
    J Chem Phys; 2006 Nov; 125(18):184904. PubMed ID: 17115792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.