These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 19895067)
1. Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor. Towrie M; Botchway SW; Clark A; Freeman E; Halsall R; Parker AW; Prydderch M; Turchetta R; Ward AD; Pollard MR Rev Sci Instrum; 2009 Oct; 80(10):103704. PubMed ID: 19895067 [TBL] [Abstract][Full Text] [Related]
2. Multidepth, multiparticle tracking for active microrheology using a smart camera. Silburn SA; Saunter CD; Girkin JM; Love GD Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756 [TBL] [Abstract][Full Text] [Related]
3. Microdisplacement sensor using an optically trapped microprobe based on the interference scale. Michihata M; Hayashi T; Nakai D; Takaya Y Rev Sci Instrum; 2010 Jan; 81(1):015107. PubMed ID: 20113129 [TBL] [Abstract][Full Text] [Related]
4. Optical force sensor array in a microfluidic device based on holographic optical tweezers. Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015 [TBL] [Abstract][Full Text] [Related]
5. Thermal motion of a holographically trapped SPM-like probe. Simpson SH; Hanna S Nanotechnology; 2009 Sep; 20(39):395710. PubMed ID: 19726835 [TBL] [Abstract][Full Text] [Related]
6. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Visscher K; Brakenhoff GJ; Krol JJ Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145 [TBL] [Abstract][Full Text] [Related]
7. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction. Ruh D; Tränkle B; Rohrbach A Opt Express; 2011 Oct; 19(22):21627-42. PubMed ID: 22109012 [TBL] [Abstract][Full Text] [Related]
8. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion. Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214 [TBL] [Abstract][Full Text] [Related]
9. Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s. Horio T; Suzuki T Rev Sci Instrum; 2009 Jan; 80(1):013706. PubMed ID: 19191440 [TBL] [Abstract][Full Text] [Related]
11. Construction and calibration of an optical trap on a fluorescence optical microscope. Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723 [TBL] [Abstract][Full Text] [Related]
17. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979 [TBL] [Abstract][Full Text] [Related]
18. Dynamic adhesive force measurements under vertical and horizontal motions of interacting rough surfaces. Yeo CD; Lee SC; Polycarpou AA Rev Sci Instrum; 2008 Jan; 79(1):015111. PubMed ID: 18248070 [TBL] [Abstract][Full Text] [Related]
20. Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization. Nyan MN; Tay FE; Tan AW; Seah KH Med Eng Phys; 2006 Oct; 28(8):842-9. PubMed ID: 16406739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]