These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 19895067)

  • 1. Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor.
    Towrie M; Botchway SW; Clark A; Freeman E; Halsall R; Parker AW; Prydderch M; Turchetta R; Ward AD; Pollard MR
    Rev Sci Instrum; 2009 Oct; 80(10):103704. PubMed ID: 19895067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdisplacement sensor using an optically trapped microprobe based on the interference scale.
    Michihata M; Hayashi T; Nakai D; Takaya Y
    Rev Sci Instrum; 2010 Jan; 81(1):015107. PubMed ID: 20113129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal motion of a holographically trapped SPM-like probe.
    Simpson SH; Hanna S
    Nanotechnology; 2009 Sep; 20(39):395710. PubMed ID: 19726835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.
    Ruh D; Tränkle B; Rohrbach A
    Opt Express; 2011 Oct; 19(22):21627-42. PubMed ID: 22109012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.
    Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O
    Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s.
    Horio T; Suzuki T
    Rev Sci Instrum; 2009 Jan; 80(1):013706. PubMed ID: 19191440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical micromanipulation.
    Dholakia K; Reece P; Gu M
    Chem Soc Rev; 2008 Jan; 37(1):42-55. PubMed ID: 18197332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic formation of optically trapped microstructure arrays for biosensor applications.
    Daria VR; Rodrigo PJ; Glückstad J
    Biosens Bioelectron; 2004 Jun; 19(11):1439-44. PubMed ID: 15093215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope.
    Caswell TA; Ercius P; Tate MW; Ercan A; Gruner SM; Muller DA
    Ultramicroscopy; 2009 Mar; 109(4):304-11. PubMed ID: 19162398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of optically trapped nanotools.
    Carberry DM; Simpson SH; Grieve JA; Wang Y; Schäfer H; Steinhart M; Bowman R; Gibson GM; Padgett MJ; Hanna S; Miles MJ
    Nanotechnology; 2010 Apr; 21(17):175501. PubMed ID: 20368683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Image Signal Accumulation Multi-Collection-Gate Image Sensor Operating at 25 Mfps with 32 × 32 Pixels and 1220 In-Pixel Frame Memory.
    Dao VTS; Ngo N; Nguyen AQ; Morimoto K; Shimonomura K; Goetschalckx P; Haspeslagh L; De Moor P; Takehara K; Etoh TG
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A compact holographic optical tweezers instrument.
    Gibson GM; Bowman RW; Linnenberger A; Dienerowitz M; Phillips DB; Carberry DM; Miles MJ; Padgett MJ
    Rev Sci Instrum; 2012 Nov; 83(11):113107. PubMed ID: 23206051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks.
    Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S
    Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic adhesive force measurements under vertical and horizontal motions of interacting rough surfaces.
    Yeo CD; Lee SC; Polycarpou AA
    Rev Sci Instrum; 2008 Jan; 79(1):015111. PubMed ID: 18248070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically induced microfluidic reconfiguration.
    Krishnan M; Erickson D
    Lab Chip; 2012 Feb; 12(3):613-21. PubMed ID: 22146978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization.
    Nyan MN; Tay FE; Tan AW; Seah KH
    Med Eng Phys; 2006 Oct; 28(8):842-9. PubMed ID: 16406739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.