These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19895072)

  • 1. A direct optical method for the study of grain boundary melting.
    Thomson ES; Wettlaufer JS; Wilen LA
    Rev Sci Instrum; 2009 Oct; 80(10):103903. PubMed ID: 19895072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast thermal desorption spectroscopy study of H/D isotopic exchange reaction in polycrystalline ice near its melting point.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2007 Nov; 127(18):184701. PubMed ID: 18020652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive three-dimensional characterization of grain boundaries by X-ray crystal microscopy.
    Liu W; Ice GE; Larson BC; Yang W; Tischler JZ
    Ultramicroscopy; 2005 Jun; 103(3):199-204. PubMed ID: 15850707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H/D exchange kinetics in pure and HCl doped polycrystalline ice at temperatures near its melting point: structure, chemical transport, and phase transitions at grain boundaries.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2009 Feb; 130(5):054501. PubMed ID: 19206978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed assembly of controlled-misorientation bicrystals.
    Marks RA; Taylor ST; Mammana E; Gronsky R; Glaeser AM
    Nat Mater; 2004 Oct; 3(10):682-6. PubMed ID: 15448681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point.
    Zhu YF; Lang XY; Zheng WT; Jiang Q
    ACS Nano; 2010 Jul; 4(7):3781-8. PubMed ID: 20557119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain boundary character distributions in Ni-16Cr-9Fe using selected area channeling patterns: methodology and results.
    Crawford DC; Was GS
    J Electron Microsc Tech; 1991 Nov; 19(3):345-60. PubMed ID: 1795187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced supercurrent density in polycrystalline YBa2Cu3O(7-delta) at 77 K from calcium doping of grain boundaries.
    Hammerl G; Schmehl A; Schulz RR; Goetz B; Bielefeldt H; Schneider CW; Hilgenkamp H; Mannhart J
    Nature; 2000 Sep; 407(6801):162-4. PubMed ID: 11001048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grain boundary melting in ice.
    Thomson ES; Hansen-Goos H; Wettlaufer JS; Wilen LA
    J Chem Phys; 2013 Mar; 138(12):124707. PubMed ID: 23556742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast thermal desorption spectroscopy study of morphology and vaporization kinetics of polycrystalline ice films.
    Lu H; McCartney SA; Chonde M; Smyla D; Sadtchenko V
    J Chem Phys; 2006 Jul; 125(4):44709. PubMed ID: 16942176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature and potassium chloride impurity on the relative ⟨101̅0⟩ tilt grain boundary and surface free energies in ice.
    Di Prinzio CL; Druetta E; Nasello OB
    J Phys Chem B; 2014 Nov; 118(47):13365-70. PubMed ID: 25101820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grain-size control in situ at high pressures and high temperatures in a diamond-anvil cell.
    Prakapenka VB; Shen G; Rivers ML; Sutton SR; Dubrovinsky L
    J Synchrotron Radiat; 2005 Sep; 12(Pt 5):560-5. PubMed ID: 16120978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How grain growth stops: a mechanism for grain-growth stagnation in pure materials.
    Holm EA; Foiles SM
    Science; 2010 May; 328(5982):1138-41. PubMed ID: 20508126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between polycrystalline fabric and the polarization of transmitted light.
    Chan WS; Talghader J
    Opt Express; 2010 Feb; 18(3):3109-15. PubMed ID: 20174144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting behaviors of nanocrystalline Ag.
    Xiao S; Hu W; Yang J
    J Phys Chem B; 2005 Nov; 109(43):20339-42. PubMed ID: 16853631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain boundary properties of ice doped with small concentrations of potassium chloride (KCl).
    Nasello OB; Di Prinzio CL; Guzmán PG
    J Phys Condens Matter; 2007 Jun; 19(24):246218. PubMed ID: 21694061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near melting point flow injection: a drastic enhancement in FAAS detection limits.
    Walter S; Aleboyeh A
    Anal Bioanal Chem; 1996 Jun; 355(5-6):687-9. PubMed ID: 15045342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations.
    Fensin SJ; Olmsted D; Buta D; Asta M; Karma A; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031601. PubMed ID: 20365741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the vortex-lattice melting process in the presence of disorder.
    Soibel A; Zeldov E; Rappaport M; Myasoedov Y; Tamegai T; Ooi S; Konczykowski M; Geshkenbein VB
    Nature; 2000 Jul; 406(6793):282-7. PubMed ID: 10917525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of combined cathodoluminescence and EBSD analysis: a case study investigating grain boundary migration mechanisms in quartz.
    Piazolo S; Prior DJ; Holness MD
    J Microsc; 2005 Feb; 217(Pt 2):152-61. PubMed ID: 15683412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.