These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19895117)

  • 1. Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo.
    Kah JC; Olivo M; Chow TH; Song KS; Koh KZ; Mhaisalkar S; Sheppard CJ
    J Biomed Opt; 2009; 14(5):054015. PubMed ID: 19895117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration dependence of gold nanoshells on the enhancement of optical coherence tomography images: a quantitative study.
    Kah JC; Chow TH; Ng BK; Razul SG; Olivo M; Sheppard CJ
    Appl Opt; 2009 Apr; 48(10):D96-D108. PubMed ID: 19340129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells.
    Agrawal A; Huang S; Wei Haw Lin A; Lee MH; Barton JK; Drezek RA; Pfefer TJ
    J Biomed Opt; 2006; 11(4):041121. PubMed ID: 16965149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation.
    Zagaynova EV; Shirmanova MV; Kirillin MY; Khlebtsov BN; Orlova AG; Balalaeva IV; Sirotkina MA; Bugrova ML; Agrba PD; Kamensky VA
    Phys Med Biol; 2008 Sep; 53(18):4995-5009. PubMed ID: 18711247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanocages as contrast agents for spectroscopic optical coherence tomography.
    Cang H; Sun T; Li ZY; Chen J; Wiley BJ; Xia Y; Li X
    Opt Lett; 2005 Nov; 30(22):3048-50. PubMed ID: 16315717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells.
    Lin AW; Lewinski NA; West JL; Halas NJ; Drezek RA
    J Biomed Opt; 2005; 10(6):064035. PubMed ID: 16409100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study.
    Kirillin M; Shirmanova M; Sirotkina M; Bugrova M; Khlebtsov B; Zagaynova E
    J Biomed Opt; 2009; 14(2):021017. PubMed ID: 19405730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography.
    Adler DC; Huang SW; Huber R; Fujimoto JG
    Opt Express; 2008 Mar; 16(7):4376-93. PubMed ID: 18542535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells.
    Zhou C; Tsai TH; Adler DC; Lee HC; Cohen DW; Mondelblatt A; Wang Y; Connolly JL; Fujimoto JG
    Opt Lett; 2010 Mar; 35(5):700-2. PubMed ID: 20195324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two optical coherence tomography systems detect topical gold nanoshells in hair follicles, sweat ducts and measure epidermis.
    Mogensen M; Bojesen S; Israelsen NM; Maria M; Jensen M; Podoleanu A; Bang O; Haedersdal M
    J Biophotonics; 2018 Sep; 11(9):e201700348. PubMed ID: 29611306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study.
    Xu X
    Lasers Med Sci; 2019 Apr; 34(3):615-628. PubMed ID: 30350124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography.
    Jia Y; Liu G; Gordon AY; Gao SS; Pechauer AD; Stoddard J; McGill TJ; Jayagopal A; Huang D
    Opt Express; 2015 Feb; 23(4):4212-25. PubMed ID: 25836459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence contrast imaging using gold nanorods in living mice eyes.
    de la Zerda A; Prabhulkar S; Perez VL; Ruggeri M; Paranjape AS; Habte F; Gambhir SS; Awdeh RM
    Clin Exp Ophthalmol; 2015; 43(4):358-66. PubMed ID: 24533647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents.
    Chen J; Saeki F; Wiley BJ; Cang H; Cobb MJ; Li ZY; Au L; Zhang H; Kimmey MB; Li X; Xia Y
    Nano Lett; 2005 Mar; 5(3):473-7. PubMed ID: 15755097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice.
    Xiong H; Guo Z; Zeng C; Wang L; He Y; Liu S
    J Biomed Opt; 2009; 14(2):024029. PubMed ID: 19405758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles.
    Kim CS; Wilder-Smith P; Ahn YC; Liaw LH; Chen Z; Kwon YJ
    J Biomed Opt; 2009; 14(3):034008. PubMed ID: 19566301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold Nanoprisms as Optical Coherence Tomography Contrast Agents in the Second Near-Infrared Window for Enhanced Angiography in Live Animals.
    Si P; Yuan E; Liba O; Winetraub Y; Yousefi S; SoRelle ED; Yecies DW; Dutta R; de la Zerda A
    ACS Nano; 2018 Dec; 12(12):11986-11994. PubMed ID: 30422624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT.
    Zhou F; Wei H; Ye X; Hu K; Wu G; Yang H; He Y; Xie S; Guo Z
    Phys Med Biol; 2015 Feb; 60(3):1385-97. PubMed ID: 25592483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of contrast agents to enhance in vivo confocal microscopy and optical coherence tomography in dermatology: A review.
    Ring HC; Israelsen NM; Bang O; Haedersdal M; Mogensen M
    J Biophotonics; 2019 Jun; 12(6):e201800462. PubMed ID: 30851078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential ability of hematoporphyrin to enhance an optical coherence tomographic image of gastric cancer in vivo in mice.
    Xiong H; Zeng C; Guo Z; Zhong H; Wang R; Liu S; He Y
    Phys Med Biol; 2008 Dec; 53(23):6767-75. PubMed ID: 18997266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.