These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 19895135)
1. Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans. Anne ML; Le Lan C; Monbet V; Boussard-Plédel C; Ropert M; Sire O; Pouchard M; Jard C; Lucas J; Adam JL; Brissot P; Bureau B; Loréal O J Biomed Opt; 2009; 14(5):054033. PubMed ID: 19895135 [TBL] [Abstract][Full Text] [Related]
2. Mid-infrared spectroscopy of serum, a promising non-invasive method to assess prognosis in patients with ascites and cirrhosis. Le Corvec M; Jezequel C; Monbet V; Fatih N; Charpentier F; Tariel H; Boussard-Plédel C; Bureau B; Loréal O; Sire O; Bardou-Jacquet E PLoS One; 2017; 12(10):e0185997. PubMed ID: 29020046 [TBL] [Abstract][Full Text] [Related]
3. Near-infrared fiber optic spectroscopy as a novel diagnostic tool for the detection of pancreatic cancer. Kondepati VR; Zimmermann J; Keese M; Sturm J; Manegold BC; Backhaus J J Biomed Opt; 2005; 10(5):054016. PubMed ID: 16292976 [TBL] [Abstract][Full Text] [Related]
4. Mid-infrared fiber-optic attenuated total reflection spectroscopy of the solid-liquid phase transition of water. Millo A; Raichlin Y; Katzir A Appl Spectrosc; 2005 Apr; 59(4):460-6. PubMed ID: 15901331 [TBL] [Abstract][Full Text] [Related]
5. A chemometric analysis for evaluation of early-stage cartilage degradation by infrared fiber-optic probe spectroscopy. Li G; Thomson M; Dicarlo E; Yang X; Nestor B; Bostrom MP; Camacho NP Appl Spectrosc; 2005 Dec; 59(12):1527-33. PubMed ID: 16390593 [TBL] [Abstract][Full Text] [Related]
6. Non-destructive and in-situ detection of shrimp freshness using mid-infrared fiber-optic evanescent wave spectroscopy. Zhou Y; Jiao L; Wu J; Zhang Y; Zhu Q; Dong D Food Chem; 2023 Oct; 422():136189. PubMed ID: 37116271 [TBL] [Abstract][Full Text] [Related]
7. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. Rohleder D; Kocherscheidt G; Gerber K; Kiefer W; Köhler W; Möcks J; Petrich W J Biomed Opt; 2005; 10(3):031108. PubMed ID: 16229633 [TBL] [Abstract][Full Text] [Related]
8. Classification of atherosclerotic rabbit aorta samples by mid-infrared spectroscopy using multivariate data analysis. Wang L; Chapman J; Palmer RA; van Ramm O; Mizaikoff B J Biomed Opt; 2007; 12(2):024006. PubMed ID: 17477721 [TBL] [Abstract][Full Text] [Related]
9. Integration of microfluidics with biomedical infrared spectroscopy for analytical and diagnostic metabolic profiling. Mansfield CD; Man A; Shaw RA IEE Proc Nanobiotechnol; 2006 Aug; 153(4):74-80. PubMed ID: 16948491 [TBL] [Abstract][Full Text] [Related]
10. Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. Fabian H; Lasch P; Naumann D J Biomed Opt; 2005; 10(3):031103. PubMed ID: 16229628 [TBL] [Abstract][Full Text] [Related]
12. Near-infrared spectroscopic applications for diagnosis of endometrial carcinoma. Xiang Y; Xu K; Zhang Z; Dai Y; Harrington Pde B J Biomed Opt; 2010; 15(6):067002. PubMed ID: 21198206 [TBL] [Abstract][Full Text] [Related]
13. Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood. Simhi R; Gotshal Y; Bunimovich D; Sela BA; Katzir A Appl Opt; 1996 Jul; 35(19):3421-5. PubMed ID: 21102730 [TBL] [Abstract][Full Text] [Related]
14. Pulse glucometry: A new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry. Yamakoshi K; Yamakoshi Y J Biomed Opt; 2006; 11(5):054028. PubMed ID: 17092177 [TBL] [Abstract][Full Text] [Related]
15. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Qi D; Berger AJ Appl Opt; 2007 Apr; 46(10):1726-34. PubMed ID: 17356615 [TBL] [Abstract][Full Text] [Related]
16. Quantification of serum apolipoprotein B by infrared spectroscopy. Liu KZ; Man A; Dembinski TC; Shaw RA Anal Bioanal Chem; 2007 Mar; 387(5):1809-14. PubMed ID: 17103149 [TBL] [Abstract][Full Text] [Related]
17. Chemometric determination of blood parameters using visible-near-infrared spectra. Meinke M; Gersonde I; Friebel M; Helfmann J; Müller G Appl Spectrosc; 2005 Jun; 59(6):826-35. PubMed ID: 16053549 [TBL] [Abstract][Full Text] [Related]
18. Noninvasive alcohol testing using diffuse reflectance near-infrared spectroscopy. Ridder TD; Hendee SP; Brown CD Appl Spectrosc; 2005 Feb; 59(2):181-9. PubMed ID: 15720758 [TBL] [Abstract][Full Text] [Related]
19. Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra. Luke TDW; Rochfort S; Wales WJ; Bonfatti V; Marett L; Pryce JE J Dairy Sci; 2019 Feb; 102(2):1747-1760. PubMed ID: 30594377 [TBL] [Abstract][Full Text] [Related]
20. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. Cerussi A; Shah N; Hsiang D; Durkin A; Butler J; Tromberg BJ J Biomed Opt; 2006; 11(4):044005. PubMed ID: 16965162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]