BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19895138)

  • 1. Method for optical coherence tomography image classification using local features and earth mover's distance.
    Sun Y; Lei M
    J Biomed Opt; 2009; 14(5):054037. PubMed ID: 19895138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography.
    Jørgensen TM; Tycho A; Mogensen M; Bjerring P; Jemec GB
    Skin Res Technol; 2008 Aug; 14(3):364-9. PubMed ID: 19159385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient Earth Mover's Distance algorithm for robust histogram comparison.
    Ling H; Okada K
    IEEE Trans Pattern Anal Mach Intell; 2007 May; 29(5):840-53. PubMed ID: 17356203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A methodological approach to the classification of dermoscopy images.
    Celebi ME; Kingravi HA; Uddin B; Iyatomi H; Aslandogan YA; Stoecker WV; Moss RH
    Comput Med Imaging Graph; 2007 Sep; 31(6):362-73. PubMed ID: 17387001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithm.
    Josse G; George J; Black D
    Skin Res Technol; 2011 Aug; 17(3):314-9. PubMed ID: 21371127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch.
    Pande P; Shrestha S; Park J; Serafino MJ; Gimenez-Conti I; Brandon J; Cheng YS; Applegate BE; Jo JA
    J Biomed Opt; 2014 Aug; 19(8):086022. PubMed ID: 25162909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.
    Cheng Y; Larin KV
    Appl Opt; 2006 Dec; 45(36):9238-45. PubMed ID: 17151765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Face recognition using spatially constrained earth mover's distance.
    Xu D; Yan S; Luo J
    IEEE Trans Image Process; 2008 Nov; 17(11):2256-60. PubMed ID: 18854252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography.
    Zafar H; Enfield J; O'Connell ML; Ramsay B; Lynch M; Leahy MJ
    Skin Res Technol; 2014 May; 20(2):141-6. PubMed ID: 23869903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT).
    Li Q; Onozato ML; Andrews PM; Chen CW; Paek A; Naphas R; Yuan S; Jiang J; Cable A; Chen Y
    Opt Express; 2009 Aug; 17(18):16000-16. PubMed ID: 19724599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem.
    Avanaki MR; Podoleanu AG; Schofield JB; Jones C; Sira M; Liu Y; Hojjat A
    Appl Opt; 2013 Mar; 52(8):1574-80. PubMed ID: 23478759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra-retinal layer segmentation in optical coherence tomography images.
    Mishra A; Wong A; Bizheva K; Clausi DA
    Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based parameter recovery from uncalibrated optical images.
    Preece SJ; Styles IB; Cotton SD; Claridge E; Calcagni A
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):509-16. PubMed ID: 16685998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of the surfaces of the retinal layer from OCT images.
    Haeker M; Abràmoff M; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):800-7. PubMed ID: 17354964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective hair removal algorithm for dermoscopy images.
    Toossi MT; Pourreza HR; Zare H; Sigari MH; Layegh P; Azimi A
    Skin Res Technol; 2013 Aug; 19(3):230-5. PubMed ID: 23560826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid with local binary patterns.
    Liu YY; Chen M; Ishikawa H; Wollstein G; Schuman JS; Rehg JM
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):1-9. PubMed ID: 20879208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametric imaging of cancer with optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.