These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19895270)

  • 21. Roles and regulation of serine/threonine-specific protein phosphatases in the cell cycle.
    Berndt N
    Prog Cell Cycle Res; 2003; 5():497-510. PubMed ID: 14593745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphatase inhibition and cell survival after DNA damage induced by radiation.
    Hamilton J; Grawenda AM; Bernhard EJ
    Cancer Biol Ther; 2009 Aug; 8(16):1577-86. PubMed ID: 19571665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel HSP90 inhibitors, NVP-AUY922 and NVP-BEP800, radiosensitise tumour cells through cell-cycle impairment, increased DNA damage and repair protraction.
    Stingl L; Stühmer T; Chatterjee M; Jensen MR; Flentje M; Djuzenova CS
    Br J Cancer; 2010 May; 102(11):1578-91. PubMed ID: 20502461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modifications of the radiosensitivity of a renal cancer cell line as a consequence of stable TIMP-1 overexpression.
    Smyth A; Reid HM; Baker AH; McGlynn H
    Int J Radiat Biol; 2007 Jan; 83(1):13-25. PubMed ID: 17357436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-dose radiation hypersensitivity in human tumor cell lines: effects of cell-cell contact and nutritional deprivation.
    Chandna S; Dwarakanath BS; Khaitan D; Mathew TL; Jain V
    Radiat Res; 2002 May; 157(5):516-25. PubMed ID: 11966317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serine/threonine protein phosphatases in apoptosis.
    Klumpp S; Krieglstein J
    Curr Opin Pharmacol; 2002 Aug; 2(4):458-62. PubMed ID: 12127881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways.
    Chang L; Graham PH; Hao J; Ni J; Bucci J; Cozzi PJ; Kearsley JH; Li Y
    Cell Death Dis; 2014 Oct; 5(10):e1437. PubMed ID: 25275598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isogenic radiation resistant cell lines: development and validation strategies.
    McDermott N; Meunier A; Lynch TH; Hollywood D; Marignol L
    Int J Radiat Biol; 2014 Feb; 90(2):115-26. PubMed ID: 24350914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells.
    Marples B; Wouters BG; Collis SJ; Chalmers AJ; Joiner MC
    Radiat Res; 2004 Mar; 161(3):247-55. PubMed ID: 14982490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signalling by protein phosphatases and drug development: a systems-centred view.
    Nguyen LK; Matallanas D; Croucher DR; von Kriegsheim A; Kholodenko BN
    FEBS J; 2013 Jan; 280(2):751-65. PubMed ID: 22340367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective inhibition of survival signal transduction pathways enhanced radiosensitivity in human esophageal cancer cell lines in vitro.
    Akimoto T; Nonaka T; Harashima K; Ishikawa H; Sakurai H; Mitsuhashi N
    Anticancer Res; 2004; 24(2B):811-9. PubMed ID: 15161032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activated PI3K/Akt/COX-2 pathway induces resistance to radiation in human cervical cancer HeLa cells.
    Xia S; Zhao Y; Yu S; Zhang M
    Cancer Biother Radiopharm; 2010 Jun; 25(3):317-23. PubMed ID: 20578837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein phosphatase 5 in signal transduction.
    Chinkers M
    Trends Endocrinol Metab; 2001; 12(1):28-32. PubMed ID: 11137038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiotherapy-induced signal transduction.
    Yacoub A; Miller A; Caron RW; Qiao L; Curiel DA; Fisher PB; Hagan MP; Grant S; Dent P
    Endocr Relat Cancer; 2006 Dec; 13 Suppl 1():S99-114. PubMed ID: 17259563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein phosphatases and their potential implications in neuroprotective processes.
    Gee CE; Mansuy IM
    Cell Mol Life Sci; 2005 May; 62(10):1120-30. PubMed ID: 15928806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of radiation response by histone deacetylase inhibition.
    Chinnaiyan P; Vallabhaneni G; Armstrong E; Huang SM; Harari PM
    Int J Radiat Oncol Biol Phys; 2005 May; 62(1):223-9. PubMed ID: 15850925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between p53 status and radiosensitivity in human tumour cell lines.
    Siles E; Villalobos M; Valenzuela MT; Núñez MI; Gordon A; McMillan TJ; Pedraza V; Ruiz de Almodóvar JM
    Br J Cancer; 1996 Mar; 73(5):581-8. PubMed ID: 8605090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphatases as targets for cancer treatment.
    Lazo JS; Wipf P
    Curr Opin Investig Drugs; 2009 Dec; 10(12):1297-304. PubMed ID: 19943201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclic nucleotide Response Element Binding protein (CREB) activation promotes survival signal in human K562 erythroleukemia cells exposed to ionising radiation/etoposide combined treatment.
    Cataldi A; di Giacomo V; Rapino M; Genovesi D; Rana RA
    J Radiat Res; 2006 Jun; 47(2):113-20. PubMed ID: 16819137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of rapamycin, an mTOR inhibitor, on radiation sensitivity of lung cancer cells having different p53 gene status.
    Nagata Y; Takahashi A; Ohnishi K; Ota I; Ohnishi T; Tojo T; Taniguchi S
    Int J Oncol; 2010 Oct; 37(4):1001-10. PubMed ID: 20811722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.