These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 19895402)
1. Mechanisms of Cl(-) transport contributing to salt tolerance. Teakle NL; Tyerman SD Plant Cell Environ; 2010 Apr; 33(4):566-89. PubMed ID: 19895402 [TBL] [Abstract][Full Text] [Related]
2. Cl- homeostasis in includer and excluder citrus rootstocks: transport mechanisms and identification of candidate genes. Brumós J; Talón M; Bouhlal R; Colmenero-Flores JM Plant Cell Environ; 2010 Dec; 33(12):2012-27. PubMed ID: 20573047 [TBL] [Abstract][Full Text] [Related]
3. Na(+) transport in glycophytic plants: what we know and would like to know. Craig Plett D; Møller IS Plant Cell Environ; 2010 Apr; 33(4):612-26. PubMed ID: 19968828 [TBL] [Abstract][Full Text] [Related]
4. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. Henderson SW; Baumann U; Blackmore DH; Walker AR; Walker RR; Gilliham M BMC Plant Biol; 2014 Oct; 14():273. PubMed ID: 25344057 [TBL] [Abstract][Full Text] [Related]
9. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. Peuke AD J Exp Bot; 2010 Mar; 61(3):635-55. PubMed ID: 20032109 [TBL] [Abstract][Full Text] [Related]
11. Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. Ahmad I; Maathuis FJ J Plant Physiol; 2014 May; 171(9):708-14. PubMed ID: 24810768 [TBL] [Abstract][Full Text] [Related]
12. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Li Z; Baldwin CM; Hu Q; Liu H; Luo H Plant Cell Environ; 2010 Feb; 33(2):272-89. PubMed ID: 19930128 [TBL] [Abstract][Full Text] [Related]
13. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Läuchli A; James RA; Huang CX; McCully M; Munns R Plant Cell Environ; 2008 Nov; 31(11):1565-74. PubMed ID: 18702634 [TBL] [Abstract][Full Text] [Related]
14. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Silva EN; Silveira JA; Rodrigues CR; Viégas RA Plant Biol (Stuttg); 2015 Sep; 17(5):1023-9. PubMed ID: 25865670 [TBL] [Abstract][Full Text] [Related]
15. Distribution and re-transportation of sodium in three Malus species with different salt tolerance. Yang HB; Yu YC; Wang Y; Xu XF; Han ZH Plant Physiol Biochem; 2019 Mar; 136():162-168. PubMed ID: 30684845 [TBL] [Abstract][Full Text] [Related]
16. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na+ and Cl- from the xylem. Teakle N; Flowers T; Real D; Colmer T J Exp Bot; 2007; 58(8):2169-80. PubMed ID: 17510213 [TBL] [Abstract][Full Text] [Related]
17. Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress. Jacobs A; Ford K; Kretschmer J; Tester M Plant Biotechnol J; 2011 Oct; 9(8):838-47. PubMed ID: 21338466 [TBL] [Abstract][Full Text] [Related]
18. Chloride: from Nutrient to Toxicant. Geilfus CM Plant Cell Physiol; 2018 May; 59(5):877-886. PubMed ID: 29660029 [TBL] [Abstract][Full Text] [Related]
19. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]