These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 19895461)
21. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L; Perestrelo R; Caldeira M; Câmara JS J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [TBL] [Abstract][Full Text] [Related]
22. Influence of pulsed electric field treatments on the volatile compounds of milk in comparison with pasteurized processing. Zhang S; Yang R; Zhao W; Hua X; Zhang W; Zhang Z J Food Sci; 2011; 76(1):C127-32. PubMed ID: 21535640 [TBL] [Abstract][Full Text] [Related]
23. Effects of metal chelator, sodium azide, and superoxide dismutase on the oxidative stability in riboflavin-photosensitized oil-in-water emulsion systems. Lee J; Decker EA J Agric Food Chem; 2011 Jun; 59(11):6271-6. PubMed ID: 21542578 [TBL] [Abstract][Full Text] [Related]
24. Riboflavin as a photosensitizer. Effects on human health and food quality. Cardoso DR; Libardi SH; Skibsted LH Food Funct; 2012 May; 3(5):487-502. PubMed ID: 22406738 [TBL] [Abstract][Full Text] [Related]
25. Headspace and direct immersion solid phase microextraction procedures for selenite determination in urine, saliva and milk by gas chromatography mass spectrometry. Kapsimali DC; Zachariadis GA J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):3210-4. PubMed ID: 19733132 [TBL] [Abstract][Full Text] [Related]
26. Volatile composition of Brassica oleracea L. var. costata DC leaves using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. de Pinho PG; Valentão P; Gonçalves RF; Sousa C; Andrade PB Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2292-300. PubMed ID: 19579264 [TBL] [Abstract][Full Text] [Related]
27. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. Deng C; Zhang X; Li N J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Sep; 808(2):269-77. PubMed ID: 15261821 [TBL] [Abstract][Full Text] [Related]
28. New Volatile Molecular Markers of Rancidity in Virgin Olive Oils under Nonaccelerated Oxidative Storage Conditions. Cecchi L; Migliorini M; Giambanelli E; Rossetti A; Cane A; Mulinacci N J Agric Food Chem; 2019 Nov; 67(47):13150-13163. PubMed ID: 31684730 [TBL] [Abstract][Full Text] [Related]
29. Quenching mechanisms and kinetics of Trolox and ascorbic acid on the riboflavin-photosensitized oxidation of tryptophan and tyrosine. Yettella RR; Min DB J Agric Food Chem; 2008 Nov; 56(22):10887-92. PubMed ID: 18975971 [TBL] [Abstract][Full Text] [Related]
30. Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions. Park MH; Jeong MK; Yeo J; Son HJ; Lim CL; Hong EJ; Noh BS; Lee J J Food Sci; 2011; 76(1):C80-8. PubMed ID: 21535659 [TBL] [Abstract][Full Text] [Related]
31. Wavelength dependence of light-induced lipid oxidation and naturally occurring photosensitizers in cheese. Andersen CM; Andersen LT; Hansen AM; Skibsted LH; Petersen MA J Agric Food Chem; 2008 Mar; 56(5):1611-8. PubMed ID: 18275145 [TBL] [Abstract][Full Text] [Related]
32. Comparison of solid-phase microextraction and dynamic headspace methods for the gas chromatographic-mass spectrometric analysis of light-induced lipid oxidation products in milk. Marsili RT J Chromatogr Sci; 1999 Jan; 37(1):17-23. PubMed ID: 9987853 [TBL] [Abstract][Full Text] [Related]
33. Development of a solid-phase microextraction method for determination of volatile oxidation compounds in fish oil emulsions. Iglesias J; Lois S; Medina I J Chromatogr A; 2007 Sep; 1163(1-2):277-87. PubMed ID: 17628572 [TBL] [Abstract][Full Text] [Related]
34. Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk. Soukoulis C; Aprea E; Biasioli F; Cappellin L; Schuhfried E; Märk TD; Gasperi F Rapid Commun Mass Spectrom; 2010 Jul; 24(14):2127-3134. PubMed ID: 20552689 [TBL] [Abstract][Full Text] [Related]
35. Comparison of mass spectrometry-based electronic nose and solid phase microextraction gas chromatography-mass spectrometry technique to assess infant formula oxidation. Fenaille F; Visani P; Fumeaux R; Milo C; Guy PA J Agric Food Chem; 2003 Apr; 51(9):2790-6. PubMed ID: 12696974 [TBL] [Abstract][Full Text] [Related]
36. Optimization of headspace solid-phase microextraction for the analysis of specific flavors in enzyme modified and natural Cheddar cheese using factorial design and response surface methodology. Januszkiewicz J; Sabik H; Azarnia S; Lee B J Chromatogr A; 2008 Jun; 1195(1-2):16-24. PubMed ID: 18495140 [TBL] [Abstract][Full Text] [Related]
37. Effects of riboflavin photosensitization on the changes of isoflavones in soymilk. Lee SW; Chang PS; Lee JH J Food Sci; 2008 Sep; 73(7):C551-5. PubMed ID: 18803701 [TBL] [Abstract][Full Text] [Related]
38. Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose. Xu Y; Chen Q; Lei S; Wu P; Fan G; Xu X; Pan S J Sci Food Agric; 2011 Sep; 91(12):2241-6. PubMed ID: 21618545 [TBL] [Abstract][Full Text] [Related]
39. Photoinduced generation of 2,3-butanedione from riboflavin. Jung MY; Oh YS; Kim DK; Kim HJ; Min DB J Agric Food Chem; 2007 Jan; 55(1):170-4. PubMed ID: 17199329 [TBL] [Abstract][Full Text] [Related]
40. The influence of bleaching agent and temperature on bleaching efficacy and volatile components of fluid whey and whey retentate. Fox AJ; Smith TJ; Gerard PD; Drake MA J Food Sci; 2013 Oct; 78(10):C1535-C1542. PubMed ID: 24102418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]