These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase. Yasgar A; Foley TL; Jadhav A; Inglese J; Burkart MD; Simeonov A Mol Biosyst; 2010 Feb; 6(2):365-75. PubMed ID: 20094656 [TBL] [Abstract][Full Text] [Related]
3. Role of phosphopantetheinyl transferase genes in antibiotic production by Streptomyces coelicolor. Lu YW; San Roman AK; Gehring AM J Bacteriol; 2008 Oct; 190(20):6903-8. PubMed ID: 18689472 [TBL] [Abstract][Full Text] [Related]
5. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. Sunbul M; Zhang K; Yin J Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986 [TBL] [Abstract][Full Text] [Related]
6. A Chemoproteomics Approach to Investigate Phosphopantetheine Transferase Activity at the Cellular Level. Konno S; Ishikawa F; Suzuki T; Dohmae N; Kakeya H; Tanabe G Chembiochem; 2017 Sep; 18(18):1855-1862. PubMed ID: 28722191 [TBL] [Abstract][Full Text] [Related]
7. The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins. Wang YY; Luo HD; Zhang XS; Lin T; Jiang H; Li YQ Arch Microbiol; 2016 Mar; 198(2):193-7. PubMed ID: 26748983 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. Finking R; Solsbacher J; Konz D; Schobert M; Schafer A; Jahn D; Marahiel MA J Biol Chem; 2002 Dec; 277(52):50293-302. PubMed ID: 12381736 [TBL] [Abstract][Full Text] [Related]
9. 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. Foley TL; Rai G; Yasgar A; Daniel T; Baker HL; Attene-Ramos M; Kosa NM; Leister W; Burkart MD; Jadhav A; Simeonov A; Maloney DJ J Med Chem; 2014 Feb; 57(3):1063-78. PubMed ID: 24450337 [TBL] [Abstract][Full Text] [Related]
10. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. García-Estrada C; Ullán RV; Velasco-Conde T; Godio RP; Teijeira F; Vaca I; Feltrer R; Kosalková K; Mauriz E; Martín JF Biochem J; 2008 Oct; 415(2):317-24. PubMed ID: 18558918 [TBL] [Abstract][Full Text] [Related]
11. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Beld J; Sonnenschein EC; Vickery CR; Noel JP; Burkart MD Nat Prod Rep; 2014 Jan; 31(1):61-108. PubMed ID: 24292120 [TBL] [Abstract][Full Text] [Related]
12. 4'-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. Leblanc C; Prudhomme T; Tabouret G; Ray A; Burbaud S; Cabantous S; Mourey L; Guilhot C; Chalut C PLoS Pathog; 2012 Dec; 8(12):e1003097. PubMed ID: 23308068 [TBL] [Abstract][Full Text] [Related]
13. A functional screen for recovery of 4'-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Owen JG; Robins KJ; Parachin NS; Ackerley DF Environ Microbiol; 2012 May; 14(5):1198-209. PubMed ID: 22356582 [TBL] [Abstract][Full Text] [Related]
14. Development of a high-throughput fluorescence polarization assay for the discovery of phosphopantetheinyl transferase inhibitors. Duckworth BP; Aldrich CC Anal Biochem; 2010 Aug; 403(1-2):13-9. PubMed ID: 20382102 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characterization of a phosphopantetheinyl transferase from Streptomyces verticillus ATCC15003, the producer of the hybrid peptide-polyketide antitumor drug bleomycin. Sánchez C; Du L; Edwards DJ; Toney MD; Shen B Chem Biol; 2001 Jul; 8(7):725-38. PubMed ID: 11451672 [TBL] [Abstract][Full Text] [Related]
16. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism. Mofid MR; Finking R; Essen LO; Marahiel MA Biochemistry; 2004 Apr; 43(14):4128-36. PubMed ID: 15065855 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Discrete Phosphopantetheinyl Transferases in Streptomyces tsukubaensis L19 Unveils a Complicate Phosphopantetheinylation Network. Wang YY; Zhang XS; Luo HD; Ren NN; Jiang XH; Jiang H; Li YQ Sci Rep; 2016 Apr; 6():24255. PubMed ID: 27052100 [TBL] [Abstract][Full Text] [Related]
18. 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. Mootz HD; Finking R; Marahiel MA J Biol Chem; 2001 Oct; 276(40):37289-98. PubMed ID: 11489886 [TBL] [Abstract][Full Text] [Related]
19. Cyanobacterial Sfp-type phosphopantetheinyl transferases functionalize carrier proteins of diverse biosynthetic pathways. Yang G; Zhang Y; Lee NK; Cozad MA; Kearney SE; Luesch H; Ding Y Sci Rep; 2017 Sep; 7(1):11888. PubMed ID: 28928426 [TBL] [Abstract][Full Text] [Related]
20. Directed Evolution of the BpsA Carrier Protein Domain for Recognition by Non-cognate 4'-Phosphopantetheinyl Transferases to Enable Inhibitor Screening. Brown AS; Owen JG; Ackerley DF Methods Mol Biol; 2023; 2670():145-163. PubMed ID: 37184703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]