BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19895604)

  • 21. Characterization of the human renal Na(+)-sulphate cotransporter gene ( NAS1) promoter.
    Lee A; Markovich D
    Pflugers Arch; 2004 Aug; 448(5):490-9. PubMed ID: 15197597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3.
    Bolt MJ; Liu W; Qiao G; Kong J; Zheng W; Krausz T; Cs-Szabo G; Sitrin MD; Li YC
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E744-9. PubMed ID: 15165995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization.
    Lee A; Beck L; Markovich D
    Genomics; 2000 Dec; 70(3):354-63. PubMed ID: 11161786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryo-EM structures of the human NaS1 and NaDC1 transporters revealed the elevator transport and allosteric regulation mechanism.
    Chi X; Chen Y; Li Y; Dai L; Zhang Y; Shen Y; Chen Y; Shi T; Yang H; Wang Z; Yan R
    Sci Adv; 2024 Mar; 10(13):eadl3685. PubMed ID: 38552027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters.
    Markovich D
    Physiology (Bethesda); 2012 Feb; 27(1):7-14. PubMed ID: 22311966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulfate homeostasis and osmoregulation in freshwater.
    Nakada T; Zandi-Nejad K; Kurita Y; Kudo H; Broumand V; Kwon CY; Mercado A; Mount DB; Hirose S
    Am J Physiol Regul Integr Comp Physiol; 2005 Aug; 289(2):R575-R585. PubMed ID: 15802556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the sodium/sulfate co-transporter by farnesoid X receptor alpha.
    Lee H; Hubbert ML; Osborne TF; Woodford K; Zerangue N; Edwards PA
    J Biol Chem; 2007 Jul; 282(30):21653-61. PubMed ID: 17545158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dermatan sulfate proteoglycan and glycosaminoglycan synthesis is induced in fibroblasts by transfer to a three-dimensional extracellular environment.
    Lee PH; Trowbridge JM; Taylor KR; Morhenn VB; Gallo RL
    J Biol Chem; 2004 Nov; 279(47):48640-6. PubMed ID: 15347686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partial deletion of the sulfate transporter SLC13A1 is associated with an osteochondrodysplasia in the Miniature Poodle breed.
    Neff MW; Beck JS; Koeman JM; Boguslawski E; Kefene L; Borgman A; Ruhe AL
    PLoS One; 2012; 7(12):e51917. PubMed ID: 23300579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hormonal regulation of sodium/sulfate co-transport in renal epithelial cells.
    Lee HJ; Sagawa K; Shi W; Murer H; Morris ME
    Proc Soc Exp Biol Med; 2000 Oct; 225(1):49-57. PubMed ID: 10998198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From Genotype to Phenotype: Nonsense Variants in SLC13A1 Are Associated with Decreased Serum Sulfate and Increased Serum Aminotransferases.
    Tise CG; Perry JA; Anforth LE; Pavlovich MA; Backman JD; Ryan KA; Lewis JP; O'Connell JR; Yerges-Armstrong LM; Shuldiner AR
    G3 (Bethesda); 2016 Sep; 6(9):2909-18. PubMed ID: 27412988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of experimentally induced hypothyroidism on sulfate renal transport in rats.
    Sagawa K; Murer H; Morris ME
    Am J Physiol; 1999 Jan; 276(1):F164-71. PubMed ID: 9887092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tubular handling and regulation of sulphate.
    Silve C
    Nephrol Dial Transplant; 2000; 15 Suppl 6():34-5. PubMed ID: 11143983
    [No Abstract]   [Full Text] [Related]  

  • 34. Differential fibrotic stromal responses of host tissue to low- and high-metastatic cloned Lewis lung carcinoma cells.
    Nakanishi H; Oguri K; Takenaga K; Hosoda S; Okayama M
    Lab Invest; 1994 Mar; 70(3):324-32. PubMed ID: 7511714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of low sulfate concentrations on the glycosaminoglycan synthesis in anatomically intact articular cartilage of the mouse.
    van der Kraan PM; de Vries BJ; Vitters EL; van den Berg WB; van de Putte LB
    J Orthop Res; 1989; 7(5):645-53. PubMed ID: 2503596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serines 260 and 288 are involved in sulfate transport by hNaSi-1.
    Li H; Pajor AM
    J Biol Chem; 2003 Sep; 278(39):37204-12. PubMed ID: 12857732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanisms in renal and intestinal sulfate (re)absorption.
    Morris ME; Murer H
    J Membr Biol; 2001 May; 181(1):1-9. PubMed ID: 11331932
    [No Abstract]   [Full Text] [Related]  

  • 38. Influence of collagen substrata on glycosaminoglycan production by B16 melanoma cells.
    Luikart SD; Maniglia CA; Sartorelli AC
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3738-42. PubMed ID: 6574512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats.
    Fernandes I; Laouari D; Tutt P; Hampson G; Friedlander G; Silve C
    Kidney Int; 2001 Jan; 59(1):210-21. PubMed ID: 11135073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Renal and small intestinal sodium-dependent symporters of phosphate and sulphate.
    Murer H; Markovich D; Biber J
    J Exp Biol; 1994 Nov; 196():167-81. PubMed ID: 7823020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.