These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 19895647)

  • 21. Impact of antimicrobial silver nanoparticles on anode respiring bacteria in a microbial electrolysis cell.
    Zakaria BS; Barua S; Sharaf A; Liu Y; Dhar BR
    Chemosphere; 2018 Dec; 213():259-267. PubMed ID: 30223131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells.
    Yuan Y; Zhou S; Zhao B; Zhuang L; Wang Y
    Bioresour Technol; 2012 Jul; 116():453-8. PubMed ID: 22534371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Roles of Biofilm Conductivity and Donor Substrate Kinetics in a Mixed-Culture Biofilm Anode.
    Lee HS; Dhar BR; An J; Rittmann BE; Ryu H; Santo Domingo JW; Ren H; Chae J
    Environ Sci Technol; 2016 Dec; 50(23):12799-12807. PubMed ID: 27797183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anode Biofilms of Geoalkalibacter ferrihydriticus Exhibit Electrochemical Signatures of Multiple Electron Transport Pathways.
    Yoho RA; Popat SC; Rago L; Guisasola A; Torres CI
    Langmuir; 2015 Nov; 31(45):12552-9. PubMed ID: 26488071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.
    Jayasinghe N; Franks A; Nevin KP; Mahadevan R
    Biotechnol J; 2014 Oct; 9(10):1350-61. PubMed ID: 25113946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-responsive current generation by phototrophically enriched anode biofilms dominated by green sulfur bacteria.
    Badalamenti JP; Torres CI; Krajmalnik-Brown R
    Biotechnol Bioeng; 2013 Apr; 110(4):1020-7. PubMed ID: 23124549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Biofilm Conductivity Maintained Despite Anode Potential Changes in a Geobacter-Enriched Biofilm.
    Dhar BR; Ryu H; Ren H; Domingo JW; Chae J; Lee HS
    ChemSusChem; 2016 Dec; 9(24):3485-3491. PubMed ID: 27870324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria.
    Lee HS; Torres CI; Rittmann BE
    Environ Sci Technol; 2009 Oct; 43(19):7571-7. PubMed ID: 19848178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells.
    Gao Y; Ryu H; Santo Domingo JW; Lee HS
    Bioresour Technol; 2014 Feb; 153():245-53. PubMed ID: 24368273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of consumption of fermentation products by anode-respiring bacteria.
    Torres CI; Marcus AK; Rittmann BE
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):689-97. PubMed ID: 17909786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How does electron transfer occur in microbial fuel cells?
    Aiyer KS
    World J Microbiol Biotechnol; 2020 Jan; 36(2):19. PubMed ID: 31955250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.
    Yang Y; Xiang Y; Sun G; Wu WM; Xu M
    Environ Sci Technol; 2015 Jan; 49(1):196-202. PubMed ID: 25495895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates.
    Lee HS; Parameswaran P; Kato-Marcus A; Torres CI; Rittmann BE
    Water Res; 2008 Mar; 42(6-7):1501-10. PubMed ID: 18035391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species.
    Kato S
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28067820
    [No Abstract]   [Full Text] [Related]  

  • 36. Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer.
    Hsu L; Deng P; Zhang Y; Jiang X
    Nano Lett; 2018 Jul; 18(7):4606-4610. PubMed ID: 29923733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1629-35. PubMed ID: 21120470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities.
    McLean JS; Wanger G; Gorby YA; Wainstein M; McQuaid J; Ishii SI; Bretschger O; Beyenal H; Nealson KH
    Environ Sci Technol; 2010 Apr; 44(7):2721-7. PubMed ID: 20199066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.
    Lusk BG; Parameswaran P; Popat SC; Rittmann BE; Torres CI
    Bioelectrochemistry; 2016 Dec; 112():47-52. PubMed ID: 27450427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline in microbial fuel cells (MFCs).
    Cheng HY; Liang B; Mu Y; Cui MH; Li K; Wu WM; Wang AJ
    Water Res; 2015 Sep; 81():72-83. PubMed ID: 26043373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.