These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19895829)

  • 21. Towards understanding how we pay attention in naturalistic visual search settings.
    Turoman N; Tivadar RI; Retsa C; Murray MM; Matusz PJ
    Neuroimage; 2021 Dec; 244():118556. PubMed ID: 34492292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatially Guided Distractor Suppression during Visual Search.
    Feldmann-Wüstefeld T; Weinberger M; Awh E
    J Neurosci; 2021 Apr; 41(14):3180-3191. PubMed ID: 33653697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial filtering restricts the attentional window during both singleton and feature-based visual search.
    Berggren N; Eimer M
    Atten Percept Psychophys; 2020 Jul; 82(5):2360-2378. PubMed ID: 31993978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orientation search is mediated by distractor suppression: evidence from priming of pop-out.
    Lamy D; Yashar A; Ruderman L
    Vision Res; 2013 Apr; 81():29-35. PubMed ID: 23380440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distractor intrusions are the result of delayed attentional engagement: A new temporal variability account of attentional selectivity in dynamic visual tasks.
    Zivony A; Eimer M
    J Exp Psychol Gen; 2021 Jan; 150(1):23-41. PubMed ID: 32700923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight.
    Fuggetta G; Duke PA
    Biol Psychol; 2017 May; 126():48-60. PubMed ID: 28396214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feature-guided attentional capture cannot be prevented by spatial filtering.
    Berggren N; Eimer M
    Biol Psychol; 2018 Apr; 134():1-8. PubMed ID: 29458180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response retrieval in a go/no-go priming-of-popout task.
    Burnham BR
    Psychon Bull Rev; 2013 Dec; 20(6):1187-94. PubMed ID: 23595351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feature-based attention across saccades and immediate postsaccadic selection.
    Eymond C; Cavanagh P; Collins T
    Atten Percept Psychophys; 2016 Jul; 78(5):1293-301. PubMed ID: 27084700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intertrial priming of pop-out search influences the shift, skew, and dispersion of response time distributions.
    Burnham BR; Cilento JJ; Hanley B
    Atten Percept Psychophys; 2015 Aug; 77(6):1930-44. PubMed ID: 25896123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Time Course of Target Template Activation Processes during Preparation for Visual Search.
    Grubert A; Eimer M
    J Neurosci; 2018 Oct; 38(44):9527-9538. PubMed ID: 30242053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involuntary attentional capture is determined by task set: evidence from event-related brain potentials.
    Eimer M; Kiss M
    J Cogn Neurosci; 2008 Aug; 20(8):1423-33. PubMed ID: 18303979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: a concurrent fNIRS-ERP study.
    Huang J; Wang F; Ding Y; Niu H; Tian F; Liu H; Song Y
    Neuroimage; 2015 Jun; 113():225-34. PubMed ID: 25818691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Target uncertainty does not lead to more distraction by singletons: intertrial priming does.
    Pinto Y; Olivers CN; Theeuwes J
    Percept Psychophys; 2005 Nov; 67(8):1354-61. PubMed ID: 16555587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. When age is irrelevant: distractor inhibition and target activation in priming of pop-out.
    Wnuczko M; Pratt J; Hasher L; Walker R
    J Gerontol B Psychol Sci Soc Sci; 2012 May; 67(3):325-30. PubMed ID: 22082524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.
    Grubert A; Eimer M
    J Cogn Neurosci; 2016 Feb; 28(2):319-32. PubMed ID: 26488588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The gradual emergence of spatially selective target processing in visual search: From feature-specific to object-based attentional control.
    Eimer M; Grubert A
    J Exp Psychol Hum Percept Perform; 2014 Oct; 40(5):1819-31. PubMed ID: 24999612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceptual basis of redundancy gains in visual pop-out search.
    Töllner T; Zehetleitner M; Krummenacher J; Müller HJ
    J Cogn Neurosci; 2011 Jan; 23(1):137-50. PubMed ID: 20044891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attentional capture during visual search is attenuated by target predictability: evidence from the N2pc, Pd, and topographic segmentation.
    Burra N; Kerzel D
    Psychophysiology; 2013 May; 50(5):422-30. PubMed ID: 23418888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophysiological evidence of low salience distractor interference during visual search.
    Fortier-Gauthier U; Jolicœur P
    Psychophysiology; 2018 Jul; 55(7):e13068. PubMed ID: 29423999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.